| 研究生: |
洪士耘 Shih-yun Hung |
|---|---|
| 論文名稱: |
以微卡計量測細胞膜不同含量膽固醇和神經節苷脂之 Microcalorimetric and cytotoxic measurements of different cholesterol and ganglioside content plasma membrane PC12 cells exposed to various form of amyloid-beta |
| 指導教授: |
陳文逸
Wen-yih Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 微卡計 、細胞膜 、細胞毒性 、神經節苷脂 、膽固醇 、類澱粉胜肽 、阿茲海默症 |
| 外文關鍵詞: | plasma membrane, microcalorimetry, cytotoxic, ganglioside, cholesterol, amyloid-beta, Alzheimer''s disease |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
類澱粉蛋白(amyloid-?,A?)被認為是引起阿茲海默症的主因,當A?由單體在細胞膜上聚集成纖維狀結構時就會毒殺細胞,但是A?引起細胞毒性及導致疾病的機制目前還不清楚。近年研究指出,細胞膜上的神經節苷脂?GM1)和膽固醇的含量與A?的貼附和聚集有關。
本研究以恆溫滴定微卡計作為即時熱流量之量測工具,測量細胞膜不同含量膽固醇和神經節苷脂之PC12細胞與不同聚集度之類澱粉蛋白作用後的反應熱,熱流數據計錄從細胞放入恆溫滴定微卡計到注射A?後並反應兩到三天。同時我們也在96孔盤內進行與微卡計內相同條件的實驗,透過這兩個實驗的結合期望能夠了解細胞在類澱粉蛋白的作用下其熱流量與細胞活性的關係。
在96孔盤內的實驗結果顯示在48小時內,降低細胞膜GM1可抑制A?對細胞的毒性;另外降低細胞膜膽固醇也可抑制A?對細胞的毒性,而增加細胞膜膽固醇則會加強A?對細胞的毒性。
將細胞培養在組織培養皿內並改變細胞膜上的膽固醇和GM1的含量後,取下培養皿上細胞放入微卡計內待平衡和細胞貼附後注射入不同聚集度的A??monomer rich, oligomer rich, fiber rich),結果顯示熱流量與細胞活性及死亡率有高度相關,證明微卡計熱流量可做為細胞狀態的參考,而透過積分注射後之總放熱量並除以死亡細胞數,發現當系統內細胞毒性較強時,單位細胞死亡所放出的熱量會增加。
?-amyloid(A?) was believed to cause the prime factor of Alzheimer’s disease. The deposition and aggregation of A? on cell membrane led to cytotoxicity. However, the detail mechanism?was still unclear. Recent studies demonstrated that certan components of plasma membrane, ganglioside(GM1) and cholesterol play an influential role in the accumulation of A? on the plasma membranes.
In this study, we applied isothermal titration calorimetry (ITC) as an “on-line” heat probe to identify the living cell systems. We changed the cholesterol and GM1 amount on PC12 cells plasma membrane in vitro and traced the thermodynamic activity of the interaction between A? and different contents plasma membrane PC12 cells by ITC. The heat flux data contained not only metabolic heat of cells but olso other reaction heat between A? and cells. Base on different experiment designs, different forms of A??(monomer rich, oligomer rich and fiber rich) were chosen. All heat flow is recorded by ITC from cell seeding to the end of experiment. We also redo the control experiment in 96 wells as a parallel experiment.
Our results demonstrated that the reduction of cholesterol or GM1 contents on plasma membrane could diminish the A??cytotoxicity?in12, 24 and 48 hours but higher cholesterol content could cause higher cytotoxicity.
The heat flow data from ITC was highly correlated to the MTT reduction and LDH release of parallel experiment. We demonstrated the heat flow from our ITC system could be a good indication of cell viability.
By integrating the total heat dissipation after the injection of A?, the exothermic heat per dead cell enhanced when the system condition was more toxic to cell.
1. Hardy, J.; Selkoe, D. J., Medicine - The amyloid hypothesis of Alzheimer''s disease: Progress and problems on the road to therapeutics. Science 2002, 297 (5580), 353-356.
2. Lambert, M. P.; Barlow, A. K.; Chromy, B. A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T. E.; Rozovsky, I.; Trommer, B.; Viola, K. L.; Wals, P.; Zhang, C.; Finch, C. E.; Krafft, G. A.; Klein, W. L., Diffusible, nonfibrillar ligands derived from A beta(1-42) are potent central nervous system neurotoxins. P Natl Acad Sci USA 1998, 95 (11), 6448-6453.
3. Esteban, J. A., Living with the enemy: a physiological role for the beta-amyloid peptide. Trends Neurosci 2004, 27 (1), 1-3.
4. Wood, W. G.; Eckert, G. P.; Igbavboa, U.; Muller, W. E., Amyloid beta-protein interactions with membranes and cholesterol: causes or casualties of Alzheimer''s disease. Bba-Biomembranes 2003, 1610 (2), 281-290.
5. Sultana, R.; Perluigi, M.; Butterfield, D. A., Redox proteomics identification of oxidatively modified proteins in Alzheimer''s disease brain and in vivo and in vitro models of AD centered around A beta(1-42). J Chromatogr B 2006, 833 (1), 3-11.
6. Blennow, K.; de Leon, M. J.; Zetterberg, H., Alzheimer''s disease. Lancet 2006, 368 (9533), 387-403.
7. Selkoe, D. J., Cell Biology of the Amyloid Beta-Protein Precursor and the Mechanism of Alzheimers-Disease. Annu Rev Cell Biol 1994, 10, 373-403.
8. Cappai, R.; White, A. R., Amyloid beta. Int J Biochem Cell B 1999, 31 (9), 885-889.
9. Kakio, A.; Nishimoto, S.; Yanagisawa, K.; Kozutsumi, Y.; Matsuzaki, K., Cholesterol-dependent formation of GM1 ganglioside-bound amyloid beta-protein, an endogenous seed for Alzheimer amyloid. Journal of Biological Chemistry 2001, 276 (27), 24985-24990.
10. Bieschke, J.; Zhang, Q. H.; Powers, E. T.; Lerner, R. A.; Kelly, J. W., Oxidative metabolites accelerate Alzheimer''s amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation. Biochemistry 2005, 44 (13), 4977-4983.
11. Shoghi-Jadid, K.; Barrio, J. R.; Kepe, V.; Wu, H. M.; Small, G. W.; Phelps, M. E.; Huang, S. C., Imaging beta-amyloid fibrils in Alzheimer''s disease: a critical analysis through simulation of amyloid fibril polymerization. Nucl Med Biol 2005, 32 (4), 337-351.
12. Xing, Y. M.; Higuchi, K., Amyloid fibril proteins. Mech Ageing Dev 2002, 123 (12), 1625-1636.
13. Serpell, L. C., Alzheimer''s amyloid fibrils: structure and assembly. Biochimica Et Biophysica Acta-Molecular Basis of Disease 2000, 1502 (1), 16-30.
14. Lin, M. S.; Chen, L. Y.; Tsai, H. T.; Wang, S. S. S.; Chang, Y.; Higuchi, A.; Chen, W. Y., Investigation of the mechanism of beta-amyloid fibril formation by kinetic and thermodynamic analyses. Langmuir 2008, 24 (11), 5802-5808.
15. Burdick, D.; Soreghan, B.; Kwon, M.; Kosmoski, J.; Knauer, M.; Henschen, A.; Yates, J.; Cotman, C.; Glabe, C., Assembly and Aggregation Properties of Synthetic Alzheimers A4/Beta Amyloid Peptide Analogs. Journal of Biological Chemistry 1992, 267 (1), 546-554.
16. Stine, W. B.; Dahlgren, K. N.; Krafft, G. A.; LaDu, M. J., In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. Journal of Biological Chemistry 2003, 278 (13), 11612-11622.
17. Jarrett, J. T.; Berger, E. P.; Lansbury, P. T., The Carboxy Terminus of the Beta-Amyloid Protein Is Critical for the Seeding of Amyloid Formation - Implications for the Pathogenesis of Alzheimers-Disease. Biochemistry 1993, 32 (18), 4693-4697.
18. Terzi, E.; Holzemann, G.; Seelig, J., Self-Association of Beta-Amyloid Peptide(1-40) in Solution and Binding to Lipid-Membranes. Journal of Molecular Biology 1995, 252 (5), 633-642.
19. Gursky, O.; Aleshkov, S., Temperature-dependent beta-sheet formation in beta-amyloid A beta(1-40) peptide in water: uncoupling beta-structure folding from aggregation. Bba-Protein Struct M 2000, 1476 (1), 93-102.
20. ChooSmith, L. P.; GarzonRodriguez, W.; Glabe, C. G.; Surewicz, W. K., Acceleration of amyloid fibril formation by specific binding of A beta-(1-40) peptide to ganglioside-containing membrane vesicles. Journal of Biological Chemistry 1997, 272 (37), 22987-22990.
21. Nichols, M. R.; Moss, M. A.; Reed, D. K.; Cratic-McDaniei, S.; Hoh, J. H.; Rosenberry, T. L., Amyloid-beta protofibrils differ from Amyloid-beta aggregates induced in dilute hexafluoroisopropanol in stability and morphology. Journal of Biological Chemistry 2005, 280 (4), 2471-2480.
22. Roher, A. E.; Chaney, M. O.; Kuo, Y. M.; Webster, S. D.; Stine, W. B.; Haverkamp, L. J.; Woods, A. S.; Cotter, R. J.; Tuohy, J. M.; Krafft, G. A.; Bonnell, B. S.; Emmerling, M. R., Morphology and toxicity of A beta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer''s disease. Journal of Biological Chemistry 1996, 271 (34), 20631-20635.
23. kayed, R., common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003, 300.
24. Koo, E. H.; Lansbury, P. T.; Kelly, J. W. In Amyloid diseases: Abnormal protein aggregation in neurodegeneration, Natl Acad Sciences: 1999; pp 9989-9990.
25. Wang, S. S. S.; Rymer, D. L.; Good, T. A., Reduction in cholesterol and sialic acid content protects cells from the toxic effects of beta-amyloid peptides. Journal of Biological Chemistry 2001, 276 (45), 42027-42034.
26. Wakabayashi, M.; Matsuzaki, K., Formation of amyloids by a beta-(1-42) on NGF-differentiated PC12 cells: roles of Gangliosides and cholesterol. Journal of Molecular Biology 2007, 371 (4), 924-933.
27. Arispe, N.; Doh, M., Plasma membrane cholesterol controls the cytotoxicity of Alzheimer''s disease A beta P (1-40) and (1-42) peptides. Faseb Journal 2002, 16 (12), 1526-1536.
28. Lin, M. S.; Chen, L. Y.; Wang, S. S. S.; Chang, Y.; Chen, W. Y., Examining the levels of ganglioside and cholesterol in cell membrane on attenuation the cytotoxicity of beta-amyloid peptide. Colloids and Surfaces B-Biointerfaces 2008, 65 (2), 172-177.
29. Schneider, A.; Schulz-Schaeffer, W.; Hartmann, T.; Schulz, J. B.; Simons, M., Cholesterol depletion reduces aggregation of amyloid-beta peptide in hippocampal neurons. Neurobiol Dis 2006, 23 (3), 573-577.
30. Yanagisawa, K.; Odaka, A.; Suzuki, N.; Ihara, Y., GM1 GANGLOSIDE-BOUND AMYLOID BETA-PROTEIN (AB) - A POSSIBLE FORM OF PREAMYLOID IN ALZHEIMERS-DISEASE. Nature Medicine 1995, 1 (10), 1062-1066.
31. Hayashi, H.; Kimura, N.; Yamaguchi, H.; Hasegawa, K.; Yokoseki, T.; Shibata, M.; Yamamoto, N.; Michikawa, M.; Yoshikawa, Y.; Terao, K.; Matsuzaki, K.; Lemere, C. A.; Selkoe, D. J.; Naiki, H.; Yanagisawa, K., A seed for Alzheimer amyloid in the brain. Journal of Neuroscience 2004, 24 (20), 4894-4902.
32. Wakabayashi, M.; Okada, T.; Kozutsumi, Y.; Matsuzaki, K., GM1 ganglioside-mediated accumulation of amyloid beta-protein on cell membranes. Biochemical and Biophysical Research Communications 2005, 328 (4), 1019-1023.
33. Okada, T.; Wakabayashi, M.; Ikeda, K.; Matsuzaki, K., Formation of toxic fibrils of Alzheimer''s amyloid beta-protein-(1-40) by monosialoganglioside GM1, a neuronal membrane component. Journal of Molecular Biology 2007, 371 (2), 481-489.
34. Kakio, A.; Nishimoto, S.; Yanagisawa, K.; Kozutsumi, Y.; Matsuzaki, K., Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: Importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 2002, 41 (23), 7385-7390.
35. 方瓊儀, 利用微卡計對於蛋白質與離子交換樹脂觸手間親疏水作用力的研究. 2002.
36. Ladbury, J. E., Application of isothermal titration calorirnetry in the biological sciences: Things are heating up! BioTechniques 2004, 37 (6), 885-887.
37. Boyer, R., Concepts i biochemistry. 2001.
38. Bottcher, H.; Furst, P., Microcalorimetric and biochemical investigations of thermogenesis and metabolic pathways in human white adipocytes. International Journal of Obesity 1996, 20 (9), 874-881.
39. levin K, F. P., Harris R Heat production from human erythrocyte in relation to their metabolism of glucose and amino acid. Scandinavian journal of clinical and laboratory investigation 1974, 34, 141-148.
40. Bottcher, H.; Furst, P., A new microcatheter enables microcalorimetric assessment of thermogenesis after stimulation in cell cultures. Journal of Biochemical and Biophysical Methods 1996, 32 (3), 191-194.
41. Kemp, R. B.; Guan, Y., Heat flux and the calorimetric-respirometric ratio as measures of catabolic flux in mammalian cells. Thermochim Acta 1997, 300 (1-2), 199-211.
42. Jordi Bermudez, P. B., and Arne Schon, Microcalorimetric evaluation of the effect of methotrexate and 6-thioguanine on sensitive T-lymphoma cells and on a methotrxate-resistant subline. cell biophysics 1992, 20, 111-123.
43. Charlebois, S. J.; Daniels, A. U.; Smith, R. A., Metabolic heat production as a measure of macrophage response to particles from orthopedic implant materials. J Biomed Mater Res 2002, 59 (1), 166-175.
44. Liu, W.; Chaspoul, F.; Lefranc, D. B.; Decome, L.; Gallice, P. In Microcalorimetry as a tool for Cr(VI) toxicity evaluation of human dermal fibroblasts, Springer: 2007; pp 21-24.
45. Lin, M. S.; Chiu, H. M.; Fan, F. J.; Tsai, H. T.; Wang, S. S. S.; Chang, Y.; Chen, W. Y., Kinetics and enthalpy measurements of interaction between P-amyloid and liposomes by surface plasmon resonance and isothermal titration microcalorimetry. Colloids and Surfaces B-Biointerfaces 2007, 58 (2), 231-236.
46. Terzi, E.; Holzemann, G.; Seelig, J., Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes. Biochemistry 1997, 36 (48), 14845-14852.
47. Sponne, I.; Fifre, A.; Kriem, B.; Koziel, V.; Bihain, B.; Oster, T.; Olivier, J. L.; Pillot, T., Membrane cholesterol interferes with neuronal apoptosis induced by soluble oligomers but not fibrils of the amyloid-beta peptide. Faseb Journal 2004, 18 (3), 836-+.
48. Sun, Z. X.; Zhou, Q. H.; Sui, S. F., Cholesterol depletion inhibits the degradation of amyloid beta-peptide in rat pheochromocytoma (PC12) cells. Neuroscience Letters 2005, 391 (1-2), 71-75.
49. Kemp, R. B.; Guan, Y. H., The application of heat flux measurements to improve the growth of mammalian cells in culture. Thermochim Acta 2000, 349 (1-2), 23-30.
50. Sultana, R.; Perluigi, M.; Butterfield, D. A., Oxidatively modified proteins in Alzheimer''s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 2009, 118 (1), 131-150.
51. Everse, J.; Coates, P. W., Neurodegeneration and peroxidases. Neurobiology of Aging 2009, 30 (7), 1011-1025.
52. Butterfield, D. A., Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: Implications for neurodegeneration in Alzheimer''s disease brain. A review. Free Radical Research 2002, 36 (12), 1307-1313.
53. Rauk, A., Why is the amyloid beta peptide of Alzheimer''s disease neurotoxic? Dalton Trans. 2008, (10), 1273-1282.
54. Calderon, F. H.; Bonnefont, A.; Munoz, F. J.; Fernandez, V.; Videla, L. A.; Inestrosa, N. C., PC12 and neuro 2a cells have different susceptibilities to acetylcholinesterase-amyloid complexes, amyloid(25-35) fragment, glutamate, and hydrogen peroxide. J Neurosci Res 1999, 56 (6), 620-631.
55. Hwang, S. L.; Yen, G. C., Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells. J Agr Food Chem 2008, 56 (3), 859-864.
56. Guan, S.; Bao, Y. M.; Jiang, B.; An, L. J., Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. European Journal of Pharmacology 2006, 538 (1-3), 73-79.
57. Jacob, R. A., The Integrated Antioxidant System. Nutr Res 1995, 15 (5), 755-766.
58. Feng, Y.; Luo, S. F.; Qu, S. S.; Zeng, C. Y.; Xu, H., Study on the thermosensitivity of a tumor cell by microcalorimetry. Thermochim Acta 1997, 303 (2), 203-207.
59. Bottcher, H.; Furst, P., Direct microcalorimetry as a technique in cell cultures. Bailliere Clin Endoc 1997, 11 (4), 739-752.
60. Okada, T.; Ikeda, K.; Wakabayashi, M.; Ogawa, M.; Matsuzaki, K., Formation of toxic A beta(1-40) fibrils on GM1 ganglioside-containing membranes mimicking lipid rafts: Polymorphisms in A beta(1-40) fibrils. Journal of Molecular Biology 2008, 382 (4), 1066-1074.
61. Ariga, T.; McDonald, M. P.; Yu, R. K., Role of ganglioside metabolism in the pathogenesis of Alzheimer''s disease - a review. J Lipid Res 2008, 49 (6), 1157-1175.