| 研究生: |
姚昇旻 Sheng-Min Yao |
|---|---|
| 論文名稱: |
開發具可調性光學性質之自組裝鎵奈米顆粒結構 Development of self-assembly gallium nanoparticles with tunable optical properties |
| 指導教授: |
陳一塵
I-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 可撓式彈性體基板 、鎵奈米顆粒 、局域性表面電漿子共振 |
| 外文關鍵詞: | Flexible elastomer substrate, Gallium nanoparticles, Localized surface plasmon resonances |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來電漿子學 (Plasmonic) 受到相當程度的關注,開啟了金屬在奈米尺度下進行光學研究的篇章,普遍可藉由改變金屬其奈米結構的幾何形狀、結構大小與週期性排列等等的方式來操控其光學性質的變化。本研究 透過 真空熱蒸鍍沉積系統 (Thermal evaporation system) 於 彈性體基板PDMS 表面沉積鎵金屬奈米結構並且利用SEM 觀察與TEM 分析得知本研究於60 ̊C低溫固化4個小時的條件下所製備之PDMS 基板表面 達成具奈米結構間距之自組裝 (Self-assembly)、層狀堆疊排列之鎵奈米顆粒結構進而觀察隨著液態鎵金屬沉積厚度從40 nm 增加到150 nm 的過程中其試片表面的顏色特徵從銀灰色變成黃色、紫色、藍色、綠色以及棕色,而本研究為了達成在可見光波段範圍內LSPR 特徵峰訊號的可逆調控本研究選擇於60 ̊C低溫固化的PDMS 基板表面沉積100 nm 的層狀堆疊液態鎵金屬結構厚度且表面顏色特徵為綠色之試片進行後續的研究,
藉由給定氣體壓力的機械式變形彈性體基板的方式從大氣環境壓力下增加到40 psi. 的過程使得原本緊密排列的液態鎵金屬結構產生的強電漿子耦合 (Plasmon coupling) 效應 使得其 LSPR特徵峰位在長波長約 725 nm 的位置減弱後而發生藍位移 (Blue-shift) 至LSPR 特徵峰位在短波長約485 nm 的位置之現象,最後,本研究達成在可見光光譜波段範圍內具有良好光譜可逆調控性以及結構的耐用性的侷域性表面電漿共振 (LSPR) 約240 nm 的調控位移量。
In recently, the plasmonic received a considerable attention in noble metal with nanoscale. It is generally possible to manipulate the optical properties of metals by changing the geometry, structure size, and periodic arrangement of their nanostructures. This research achieved in self-assembly and layered gallium nanoparticles (GaNPs) with nano-gap spacing onto PDMS of prepared at 60 ̊C for 4 hours only by thermal evaporation process. After that, observed the color characteristic changes in thickness of deposited gallium increased from 40 nm to 150 nm. Furthermore, this research in order to achieved in tunable and reversible plasmon resonances within visible-spectrum range, choose to deposited 100 nm-Ga onto PDMS of prepared at 60 ̊C for 4 hours that plasmon resonances peak was located in 725 nm wavelength and the color characteristic displays green like to perform follow-up experiments. Installing above PDMS specimen in a homemade mold, then mechanically deform the PDMS with GaNPs structures to make the plasmon coupling effect reduced by given gas pressure. During above, the plasmon resonances peak wavelength in 725 nm display a blue-shift to 485 nm when the given gas pressure increased from atmospheric pressure to 40 psi. Ultimate, the PDMS with GaNPs structures with good durability and wide range tunable and reversible LSPR peak shift (~240 nm) was achieved in this research.
[1] R. W. Wood, Philos. Mag. 4, 396, (1902)
[2] U. Fano, J. Opt. Soc. Am., 31, 213, (1941).
[3] A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275, (1965).
[4] E. Kretschmann and H. Raether, Z. Naturforschung A, 23, 2135 (1968).
[5] A. Otto, Z. Physik, 216, 410 (1968).
[6] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[7] W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B 59, 12661 (1998).
[8] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[9] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[10] F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
[11] K. A. Willets,. R. P. R.. Duyne, Rev. Phys. Chem., 58, 267, (2007).
[12] https://www.materialsnet.com.tw/DocView.aspx?id=7203
[13] M. Fleischmann, P. J. Hendra, A. J. McQuillan, Chemical physics letters, (1974).
[14] D. L. Jeanmaire, R. P. Van Duyne, Journal of electroanalytical chemistry, (1977).
[15] M. G. Albrecht, J. A. Creighton, Chem. Soc., 99, 15, 5215-5217, (1977).
[16] https://m.antpedia.com/news/293027.html
[17] Mehran R. Hoonejani, Gary B. Braun, Carl D. Meinhart, and Martin Moskovits ACS Nano, 9(4), 4328-4336, (2015).
[18] J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, ACS Nano, 7(6), 5350-5359, (2013).
[19] Y. A. Han, J. Ju, Y. Yoon, S. M. Kim, Journal of nanoscience and nanotechnology, 14(5), 3797-3799, (2014).
[20] D. Lin, S. Feng, H. Huang, W. Chen, H. Shi, Journal of Biomedical Nanotechnology, 10(3), 478-484, (2014).
[21] E. J. Zeman, G. C. Schatz, Journal of Physical Chemistry, 91(3), 634-643, (1987).
[22] J. Henzie, M. H. Lee, T. W. Odom. Nature Nanotechnology, 2(9), 549-554. (2007).
[23] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem Rev., 111, 3669, (2011).
[24] Duan, H., Hu, H., Kumar, K., Shen, Z. & Yang, J. K. W. ACS Nano, 5(9), 7593-7600. (2011).
[25] P. K. Jain, M. A. El-Sayed, Nano letters, 8(12), 4347-4352, (2008).
[26] C. Bohren and D. Huffman, “Absorption and Scattering of Light by Small Particles” (Wiley, New York, 1983).
[27] J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, Nano Letters, 12(3), 1660-1667, (2012).
[28] J. Chen, L. X. Song, J. Yang, Journal of Materials Chemistry, 22(13), 6251, (2012).
[29] R. H. J. Doremus, Chem. Phys., 40, 2389, (1964).
[30] Zhao, Y. Analytical Chemistry, 85(2), 1053-1057, (2012).
[31] Tobias A. F. Konig, ACS Nano, 8(6), 6182-6192, (2014).
[32] M. Kang, J.-J. Kim, Y.-J. Oh, S.-G. Park, Adv. Mater, 26, 4510–4514, (2014).
[33] M. S. Bar, H. Haick, Nano., 7, 8366, (2013).
[34] https://www.materialsnet.com.tw/DocView.aspx?id=21398
[35] S. Q Wang, T. Chinnasamy, Trends in Biotechnology, 34(11), 909-921, (2016).
[36] https://etd.lis.nsysu.edu.tw//ETD-db/ETD-search/view_etd?URN=etd-0721109-131311
[37] S. Seethapathy, T. Gorecki, Analytica chimica acta, 750, 48-62, (2012).
[38] A. Müller, M. C. Wapler, and U. Wallrabe, Soft matter, (2019).
[39] Angel S. Cruz Félix, A. Santiago-Alvarado, Int. J. Eng, (2014).
[40] D. M. Kingsley, C. H. McCleery, C. D. L. Johnson, Journal of the Mechanical Behavior of Biomedical Material, 92, 152-161, (2019).
[41] X. Ye, H. Liu, Y. Ding, H. Li, Microelectronic Engineering, 86(3), 310-313, (2009).
[42] M. Liu, J. Sun, Q. Chen - Sensors and Actuators A: Physical, (2009).
[43] Catalán-Gómez S, Redondo-Cubero A, Palomares F J,Nucciarelli F and Pau J L, Nanotechnology, 28(40), 405705, (2017).
[44] Pae C Wu, Plasmonic Gallium Nanoparticles–Attributes and Applications, (2009).
[45] Knight, M. W., Coenen, T., Yang, Y., ACS Nano, 9(2), 2049–2060, (2015).
[46] J. M. McMahon, G. C. Schatz, Phys. Chem. Chem. Phys., 15, 5415, (2013).
[47] Hunderi O. and Ryberg R., J. Phys. F: Met. Phys., 4, 2084, (1974).
[48] G. V. Naik, V. M. Shalaev, A. Boltasseva, Adv. Mater., 25, 3264, (2013).
[49] Wu, P. C., Kim, T.-H., Brown, A. S., Applied Physics Letters, 90(10), (2007).
[50] Catalán-Gómez, S., Bran, C., Vázquez, M., Scientific Reports, 10(1), (2020).
[51] A. G. Marin, T. G. Mendiola, Nanoscale, 8, 9842, (2016).
[52] N. E. Stankova, P. A. Atanasov, Applied Surface Science, 374, 96-103, (2016).
[53] http://www.sindatek.com/Bmyl.htm
[54] R Fernandez Garcia, “Simulation and characterization of optical nanoantennas for field enhancement and waveguide coupling”, (2013).
[55] K Lee, J Irudayaraj, Small, 9(7), 1106-1115, (2013).
[56] Y. L. Chiang, C.W. Chen, C.H.Wang, C.Y.Hsieh, Y.T. Chen, H.Y.Shih, and Y.F. Chen, Applied Physics Letters 96, 041904 (2010).
[57] S.Olcum, A.Kocabas, G. Ertas, A. Atalar, A. Aydinli, Optices Express, 17, 8542 (2009).
[58] F. Pinto, M. Meo - Applied Composite Materials, 24, 643–660, (2017).
[59] S. W. Han, I. H. Kim, J. H. Kim, Y. D. Kim - Polymer, 138, 24-32, (2018).
[60] P. K. Jain, M. A. El-Sayed, Chem. Phys. Lett., 487, 153, (2010)
[61] http://ir.lib.ncu.edu.tw/handle/987654321/74232
[62] Y. Lu, H. Yu, S. Chen, X. Quan, Environmental science and Technology, 46(3), 1724-1730, (2012).