跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許家銘
Chia-Ming Hsu
論文名稱: 三義火炎山土石流現地監測資料之分析與判識
指導教授: 周憲德
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 94
中文關鍵詞: 土石流次聲地聲希爾伯特-黃轉換
外文關鍵詞: debris flows, infrasound, geophones, Hilbert-Huang Transform
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近年來全球氣候變遷,極端雨量的出現使土石流發生機率增加,因此本研究經由地聲及次聲監測系統搭配現場影像收集土石流發生時之現場資料,了解土石流發生時之次聲及地聲音頻特性,並分析環境風聲之音頻特性與次聲反應之關係。本研究主要研究之土石流事件為2012/8/2蘇拉颱風引起之火炎山土石流事件。土石流之次聲監測為運用顆粒運動時所散發聲音之特性。故本研究藉由現地事件搭配現場影像找出土石流發生時顆粒撞擊時之音頻特性,並區分由空氣傳播之次聲類型(如土石流引起、風聲引起)與音頻特性之關係,以了解顆粒運動或環境風聲引起發聲機制。
      一般現地低頻噪音成因為風聲、雨聲、地震等因素,實驗及現地資料顯示其特徵頻率皆在5 Hz以下。若以HHT求取解析度更高之特徵頻率約為5-15 Hz,且由此次土石流事件之訊號分析得知地聲所收集之反應較為良好,其特徵頻率概括於10-50 Hz間,且藉由影像系統驗證雙聲系統,得知藉由地聲所測得之反應,分析頻譜以及判定訊號反應之延時,可作為土石流預警系統之根據。


    The debris-flow monitoring system setup in Houyenshan Station includes the acoustic sensors, geophone, rain gauge and video recording system. To better identify the characteristics of debris-flow generated signals, the acoustic and seismic signals from both the debris-flow events and environmental noises such as wind gusts, rains, thunders, rockfalls, runoff and earthquakes are analyzed. The acoustic noises such as wind gusts, rains, thunders and earthquakes are generally below 5Hz and with shorter duration (less than 10-100 seconds). The rockfalls are with the frequency range of 30-50 Hz and a short duration of a few seconds. The frequency of seismic data of debris flows are in the range between 10-50 Hz and with a duration greater than 100 seconds. Non-stationary process of the debris flow acoustic signals are demonstrated by using the HHT approach. Frequency rises during incoming surge and falls at the debris-flow tail.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 表 目 錄 vi 圖 目 錄 vii 第一章 緒論 1 1.1前言 1 1.2研究目的 2 1.3 研究方法 2 1.4 論文架構 3 第二章 文獻回顧 5 2.1聲波之相關研究 5 2.2土石流之地聲 9 2.3聲音之基本介紹 10 2.3.1聲音的產生 10 2.3.2聲音的傳播速度 10 2.3.3聲音的特性 11 第三章 儀器設備及分析方法介紹 12 3.1現地設備介紹 12 3.2頻率分析方法介紹 16 第四章 實驗室環境噪聲試驗結果與討論 20 4.1風聲(風速風壓引起之次聲反應實驗) 20 4.2風向(不同風向引發之次聲反應值差異) 26 4.3現地監測之雨量統計及前置作業 28 4.3.1雨量 28 4.3.2現地雙聲系統與標準時間校正 29 4.4現地環境監測實驗 30 4.4.1暴雨雙聲資料 30 4.4.2地震雙聲資料 34 4.4.3人為製造之落石試驗 37 4.4.4雷聲 39 4.4.5強度衰減試驗 42 第五章 現地監測土石流雙聲與影像結果 44 5.1現地土石流及影像位置介紹 42 5.2各事件之雙聲及影像資料分析 46 5.2.1 2013/8/2 5:40AM – 6:20AM 46 5.2.2 2013/8/2 6:25AM – 6:45AM 55 5.2.3 2013/8/2 8:50AM – 9:00AM 59 5.2.4 2013/8/2 9:40AM – 10:00AM 65 5.2.5 現地風速資料統整 74 第六章 結論與建議 76 6.1結論 76 6.2建議 77 參考文獻 78

    [1] 張友龍 (2012),「應用次聲與地聲之土石流現場觀測與雨量臨界分析」,國立中央大學土木工程研究所博士論文。
    [2] 黃郅軒 (2011),「儲槽內顆粒流動與發生特性之研究」,國立中央大學土木工程研究所碩士論文。
    [3] 黃玫諼 (2002),「土石流地聲特性之實驗研究」,國立成功大學水利暨海洋工程研究所碩士論文。
    [4] 章書成、洪勇、余斌(2002),「泥石流次聲特性及警報裝置」。中國科學院水利部成都山地災害與環境研究所。
    [5] Vriend, N.M. , Hunt, M.L. ,Clayton, R.W. , Brennen, C.E. , Brantley, K.S. , and Ruiz-Angulo, A. , (2007), “ Solving the mystery of booming sand dunes” , Geophysical Research Letters , Vol.34, pp. L16306
    [6] Andreotti, B. , Bonneau, L. , and Clément, E. , (2008), “ Comment on “Solving the mystery of boomin sand dunes” by Nathalie M. Vriend et al.” , Geophysical Research Letters , Vol. 35, pp. L08306.
    [7] Vriend, N.M. , Hunt, M.L. , Clayton, R.W. , Brennen, C.E. , Brantley, K.S. , and Ruiz-Angulo, A. , (2008), “ Reply to comment by B. Andreotti et al. on “Solving the mystery of booming sand dunes”” . Geophysical Research Letters, Vol.35 , pp. L08307.
    [8] Hunt, M.L. , and Vriend, N.M. , (2010) , “ Booming Sand Dunes”, Annu. Rev. Earth Planet. Sci. 2010 , pp. 281–301
    [9] Dagois-Bohy, S. , Ngo, S. , Pont, S.C. , Douady, S. , (2010), “Laboratory Singing sand avalanches”. Ultrasonics , Vol.50 , pp. 127-132.

    [10] Arrowsmith, S.J. , Hale, J.M. , Burlacu, R. , Pankow, K.L. , Stump, B.W. , Hayward, C. , Randall, G.E. , and Taylor, S.R. , (2011), “ Infrasound Signal Characteristics From Small Earthquakes”. Monitoring Research Review:Ground-Based Nuclear Explosion Monitoring Technologies, pp. 743-754
    [11] Arrowsmith, S.J. , Whitaker, R.D. , and Stead, R.J. , (2011), ” Infrasound as a Depth Discriminant”. Monitoring Research Review:Ground-Based Nuclear Explosion Monitoring Technologies , pp. 755-765.
    [12] Werner-Allen, G. , Johnson, J. , Ruiz, M. , Lees, J. , and Welsh, M. , (2005), “ Monitoring Volcanic Eruptions with a Wireless Sensor Network. Wireless Sensor Networks”. Proceeedings of the Second European Workshop on , pp. 108-120.
    [13] Caplan-Auerbach, J. , Fox, C.G. , Duennebier, F.K. , (2001), “ Hydroacoustic detection of submarine landslides on Kilauea volcano” , Geophysical Research Letters , Vol.28 , pp. 1811-1813.
    [14] Hübl, J. , Zhang, S.C. , and Kogelnig, A. , (2008), ” Infrasound measurement of debris flow”. Monitoring, Simulation, Prevention and Remediation of Dense Debris Flows II, pp. 3-12.
    [15] Kogelnig, A. , Hübl, J. , Suriñach, E. , Vilajosana, I. , McArdell, B.W. , (2011), ” Infrasound produced by debris flow: propagation and frequency content evolution” , Natural Hazards , pp. 1-21.

    [16] Huang, C.J. , Yeh, C.J. , Chen, C.Y. , and Chang, S.T. , (2008), “ Ground vibrations and airborne sounds generated by motion of rock in a river bed” , Natural Hazards and Earth System Sciences , pp. 1139-1147.
    [17] Douady, S. , Manning, A. , Hersen, P. , Elbelrhiti, H. , Protière, S. , Daerr, A. , Kabbachi, B. , (2006), “ Song of the Dunes as a Self-Synchronized instrument”, Physical Review Letters , Vol. 97 , pp. L018002.
    [18] Chou, H.T. , Chang, Y.L. , Zhang, S.C. , (2010), ” Acoustic Signals and Geophone Response Induced By Stony-Type Debris Flows”
    [19] Abancó, C. , Hürlimann, M. , Fritschi, B. , Graf, C. , and Moya, J. , (2012), “ Transformation of Ground Vibration Signal for Debris-Flow Monitoring and Detection in Alarm Systems” , Sensors 2012 , Vol.12 , pp. 4870-4891.
    [20] Andreotti, B. , (2004), “ The song of dunes as a wave-particle mode locking” , Physical Review Letter, Vol.93 , pp. L238001.

    QR CODE
    :::