跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡欣諺
Hsin-Yen Tsai
論文名稱: 不同半徑比和搜尋週期對最強地震圓弧雙交叉 的強震預測效能之影響
The influence of different radius ratios and search periods on the strong earthquake prediction performance of the strongest double intersections of circular arcs of earthquakes
指導教授: 李顯智
Hin-Chi Lei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 243
中文關鍵詞: 最強地震圓弧雙交叉
外文關鍵詞: the strongest double intersection of circular arcs of earthquakes
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究運用李顯智博士提出的「最強地震圓弧雙交叉」的概念來進行強震之預測分析。本研究從台灣中央氣象局地震資料庫擷取地震目錄,分析從1986年到2016年間發生之地震並搜尋出最強地震圓弧雙交叉。
    透過對最強地震圓弧交叉的不同搜尋週期dy、徑向誤差TOLRe和弧向誤差TOLde三大參數做調整,得出不同參數組合下的結果,再加入半徑比因素統計整理並進行數據分析後,便可得出各自的預測機率,再綜合以上的數據及分析來比較不同參數對於預測準確度的影響。
    最後發現在保留半徑比小於1.7的雙凸交叉,其70天內的強震命中率都能達到接近60%或更高,而半徑比小於1.7的凹凸交叉,其70天內的強震命中率都在50%或略低。


    We make use of the concept of the strongest double intersection of circular arcs of earthquakes proposed by Hin-Chi Lei to predict strong earthquake.
    The earthquake records from 1986 to 2016 taken from the Central Weather Bureau of Taiwan are studied. The search period of the intersections dy , the radial precision parameter TOLRe and the circumferential precision parameter TOLde are assigned to different values in order to test the efficiency of the prediction by our theory. In addition, the radius ratio is also taken into account in our analysis.
    We found that the hit rate of the prediction of the strong earthquake within 70 days can reach 60% or even higher for the strongest double convex intersections of the circular arcs of earthquakes with radius ratio smaller than 1.7 if the parameter dy is smaller than 6. For the concave convex intersections with radius ratio smaller than 1.7 the hit rate of the prediction is a bit lower than or equal to 50% if dy is smaller than 6.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 x 表目錄 xvi 符號說明 xxiii 第一章、緒論 1 1-1 研究動機 1 1-2 研究目的與文獻回顧 1 第二章、研究方法與內容 3 2-1 地震目錄 3 2-2 地震圓弧介紹 4 2-3 地震圓弧定義 4 2-4 地震圓弧之交叉型態 6 2-5 研究範圍 7 2-6 最強地震圓弧概念及步驟 7 第三章、研究實際案例分析 8 3-1 在dy為1下,不同TOLde和TOLRe的組合所得到之結果 8 3-1-1 TOLde = 0.09, TOLRe = 0.012 8 3-1-2 TOLde = 0.09, TOLRe = 0.014 9 3-1-3 TOLde = 0.09, TOLRe = 0.016 9 3-1-4 TOLde = 0.11, TOLRe = 0.012 9 3-1-5 TOLde = 0.11, TOLRe = 0.014 9 3-1-6 TOLde = 0.11, TOLRe = 0.016 10 3-1-7 TOLde = 0.13, TOLRe = 0.012 10 3-1-8 TOLde = 0.13, TOLRe = 0.014 10 3-1-9 TOLde = 0.13, TOLRe = 0.016 10 3-1-10 TOLde = 0.15, TOLRe = 0.012 11 3-1-11 TOLde = 0.15, TOLRe = 0.014 11 3-1-12 TOLde = 0.15, TOLRe = 0.016 11 3-2 在dy為2下,不同TOLde和TOLRe的組合所得到之結果 12 3-2-1 TOLde = 0.09, TOLRe = 0.012 12 3-2-2 TOLde = 0.09, TOLRe = 0.014 12 3-2-3 TOLde = 0.09, TOLRe = 0.016 13 3-2-4 TOLde = 0.11, TOLRe = 0.012 13 3-2-5 TOLde = 0.11, TOLRe = 0.014 14 3-2-6 TOLde = 0.11, TOLRe = 0.016 14 3-2-7 TOLde = 0.13, TOLRe = 0.012 15 3-2-8 TOLde = 0.13, TOLRe = 0.014 15 3-2-9 TOLde = 0.13, TOLRe = 0.016 15 3-2-10 TOLde = 0.15, TOLRe = 0.012 16 3-2-11 TOLde = 0.15, TOLRe = 0.014 16 3-2-12 TOLde = 0.15, TOLRe = 0.016 17 3-3 在dy為3下,不同TOLde和TOLRe的組合所得到之結果 18 3-3-1 TOLde = 0.09, TOLRe = 0.012 18 3-3-2 TOLde = 0.09, TOLRe = 0.014 19 3-3-3 TOLde = 0.09, TOLRe = 0.016 20 3-3-4 TOLde = 0.11, TOLRe = 0.012 21 3-3-5 TOLde = 0.11, TOLRe = 0.014 22 3-3-6 TOLde = 0.11, TOLRe = 0.016 22 3-3-7 TOLde = 0.13, TOLRe = 0.012 23 3-3-8 TOLde = 0.13, TOLRe = 0.014 24 3-3-9 TOLde = 0.13, TOLRe = 0.016 25 3-3-10 TOLde = 0.15, TOLRe = 0.012 26 3-3-11 TOLde = 0.15, TOLRe = 0.014 27 3-3-12 TOLde = 0.15, TOLRe = 0.016 28 3-4 在dy為4下,不同TOLde和TOLRe的組合所得到之結果 29 3-4-1 TOLde = 0.09, TOLRe = 0.012 29 3-4-2 TOLde = 0.09, TOLRe = 0.014 30 3-4-3 TOLde = 0.09, TOLRe = 0.016 31 3-4-4 TOLde = 0.11, TOLRe = 0.012 32 3-4-5 TOLde = 0.11, TOLRe = 0.014 32 3-4-6 TOLde = 0.11, TOLRe = 0.016 33 3-4-7 TOLde = 0.13, TOLRe = 0.012 34 3-4-8 TOLde = 0.13, TOLRe = 0.014 35 3-4-9 TOLde = 0.13, TOLRe = 0.016 36 3-4-10 TOLde = 0.15, TOLRe = 0.012 37 3-4-11 TOLde = 0.15, TOLRe = 0.014 38 3-4-12 TOLde = 0.15, TOLRe = 0.016 38 3-5 在dy為5下,不同TOLde和TOLRe的組合所得到之結果 39 3-5-1 TOLde = 0.09, TOLRe = 0.012 39 3-5-2 TOLde = 0.09, TOLRe = 0.014 40 3-5-3 TOLde = 0.09, TOLRe = 0.016 41 3-5-4 TOLde = 0.11, TOLRe = 0.012 42 3-5-5 TOLde = 0.11, TOLRe = 0.014 43 3-5-6 TOLde = 0.11, TOLRe = 0.016 44 3-5-7 TOLde = 0.13, TOLRe = 0.012 44 3-5-8 TOLde = 0.13, TOLRe = 0.014 45 3-5-9 TOLde = 0.13, TOLRe = 0.016 46 3-5-10 TOLde = 0.15, TOLRe = 0.012 46 3-5-11 TOLde = 0.15, TOLRe = 0.014 47 3-5-12 TOLde = 0.15, TOLRe = 0.016 47 3-6 在dy為6下,不同TOLde和TOLRe的組合所得到之結果 48 3-6-1 TOLde = 0.09, TOLRe = 0.012 48 3-6-2 TOLde = 0.09, TOLRe = 0.014 48 3-6-3 TOLde = 0.09, TOLRe = 0.016 49 3-6-4 TOLde = 0.11, TOLRe = 0.012 49 3-6-5 TOLde = 0.11, TOLRe = 0.014 49 3-6-6 TOLde = 0.11, TOLRe = 0.016 50 3-6-7 TOLde = 0.13, TOLRe = 0.012 50 3-6-8 TOLde = 0.13, TOLRe = 0.014 51 3-6-9 TOLde = 0.13, TOLRe = 0.016 51 3-6-10 TOLde = 0.15, TOLRe = 0.012 52 3-6-11 TOLde = 0.15, TOLRe = 0.014 52 3-6-12 TOLde = 0.15, TOLRe = 0.016 53 第四章、研究案例統計 54 4-1 在不同搜尋週期下的強震機率統計 54 4-1-1 dy=1 70天內、35天內發生強震機率 54 4-1-2 dy=2 70天內、35天內發生強震機率 56 4-1-3 dy=3 70天內、35天內發生強震機率 58 4-1-4 dy=4 70天內、35天內發生強震機率 60 4-1-5 dy=5 70天內、35天內發生強震機率 62 4-1-6 dy=6 70天內、35天內發生強震機率 64 4-2 在不同搜尋週期下加入半徑比的強震機率統計 66 4-2-1 dy=1 70天內、35天內發生強震機率 66 4-2-2 dy=2 70天內、35天內發生強震機率 68 4-2-3 dy=3 70天內、35天內發生強震機率 70 4-2-4 dy=4 70天內、35天內發生強震機率 72 4-2-5 dy=5 70天內、35天內發生強震機率 74 4-2-6 dy=6 70天內、35天內發生強震機率 76 4-3 針對dy=3,4,5的綜合命中率統計 78 第五章、研究案例統計說明 79 5-1 最強地震圓弧交叉重複 81 5-2 各個最強地震圓弧雙交叉之半徑比統計 85 5-2-1 所有相異交叉統計 85 5-2-2 各個搜尋週期下的相異交叉分析 101 5-2-3 各個搜尋週期半徑比及dt之關聯 137 第六章、結論 148 第七章、參考文獻 150 附錄、案例圖示 152

    [1] H.C.Lei and C.W.Tang, “Circular Arcs and Curvilinear Distributions of Events of Earthquakes in Taiwan,” The Thirteenth National Conference on Structural Engineering,The Third Nationa Conference on Earthquake Engineering,Taiwan, 2016.
    [2] H.C.Lei, “Circles,Circular Arcs and Lines of Earthquakes Around Taiwan,” The 40th National Conference on Theoretical and Applied Mechanics,Taiwan, 2016.
    [3] H.C.Lei, “Circles,Circular Arcs and Lines of Earthquakes Around Taiwan (II):Magnitude and Time, ” The 15th Conference on Land Studies,Tainan,Taiwan, 2017.
    [4] H.C.Lei, “Some Idears for Constructing Significant Intersections of Circular Arcs of Earthquake,” Taiwan-Japan Joint Symposium on the Advancement of Urban Earthquake Hazard Mitigation Technology,Taoyuan,Taiwan, 2017.
    [5] H.C.Lei, “Strongest Double Intersections of Circular Arcs of Earthquakes around Taiwan,” The 23rd Forum on Land Use and Planning,Tainan,Taiwan, 2019.
    [6] H.C.Lei, “Prediction of Strong Earthquakes around Taiwan by Intersection Point of SDCICAE Close to Evmax, ” The 2019 Taiwan-
    Japan Joint Symposium on the Advancement of Urban Earthquake
    Hazard Mitigation Technology,Taoyuan,Taiwan, 2019
    [7] H.C.Lei, “ASICAE by HinChi Lei to find the strongest intersections of circular arcs of earthquakes,” 2019. [線上].
    Available: https://youtu.be/tvgYLpoH9T4.
    [8] “ 中 央 氣 象 局 地 震 測 報 中 心 , ” [ 線 上 ]. Available: https://scweb.cwb.gov.tw/zh-tw/earthquake/data/.
    [9] 簡子琦,「以強震發生等機率線和虛擬地震目錄驗證最強地震圓弧雙交叉理論在台灣地區的預測效率」,國立中央大學,2020.
    [10] 李瑋育,「地震圓弧之精度對台灣地區最強地震圓弧雙交叉之影響」,國立中央大學,碩士論文,2019.
    [11] 許祐銓,「短搜尋週期的極淺層最強地震圓弧雙交叉與後續台灣地區強震之關聯」,國立中央大學,碩士論文,2019.
    [12] 范書源,「搜尋週期為三年半時使用SDICAE作強震預測的最佳精度設定」,國立中央大學,碩士論文,2020.
    [13] 范國豪,「搜尋週期為四年時使用SDCICAE做強震預測的最佳精度設定」,國立中央大學,碩士論文,2020.
    [14] 林亨學,「搜尋週期為三年時使用SDICAE做強震預測的最佳精度設定」,國立中央大學,碩士論文,2020.

    QR CODE
    :::