| 研究生: |
陳紀穎 Chi-Ying Chen |
|---|---|
| 論文名稱: |
利用葉片溫度進行灌溉管理—以玉米為例 Using Leaf Temperature for Irrigation Management— Taking Corn as An Example |
| 指導教授: |
吳瑞賢
Ray-Shyan Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 水分逆境指數 、葉片溫度 、灌溉管理 、土壤含水量 |
| 外文關鍵詞: | Crop Water Stress Index, Leaf Temperature, Irrigation Management, Soil Water Content |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去,農民灌溉時,僅藉由以往的經驗進行操作,或是依據土壤水分的測定、蒸發散量的估算、對植物直接測量其莖水勢、氣孔導度等,以決定是否灌溉。這些方法的使用上多半較為繁瑣,或對植物、土壤具破壞性,並且僅能反映出一小區域的狀況,本文利用作物水分逆境指數(Crop Water Stress Index, CWSI)來對玉米進行監測,量化作物的水分狀況。欲透過 CWSI 對作物進行監測,首先需經由實驗建立北台灣玉米之上下基準線,𝑇𝐶為葉片溫度;𝑇𝐴為空氣溫度,下基準線(𝑇𝐶 − 𝑇𝐴)𝐿為植物以潛在蒸發散量行蒸散時的葉溫與氣溫之差值;(𝑇𝐶 − 𝑇𝐴)𝑈上基準線,為植物無法行蒸散時的葉溫與氣溫之差值。經過試驗顯示上、下基準線分別為(𝑇𝐶 − 𝑇𝐴)𝑈 = 5.61 ℃;(𝑇𝐶 − 𝑇𝐴)𝐿 =−3.06 × 𝑉𝑃𝐷 + 4.69 ℃;VPD 為飽和蒸汽壓與實際蒸氣壓之差值,單位為 kPa。
本研究利用 CWSI 對玉米進行三組試驗。試驗一顯示,玉米在灌溉後,前期會因停止灌溉而導致 CWSI 略為上升,達 0.35 左右,之後三天後會因為土壤水分不足而大幅上升增加至 0.8,建議將玉米之CWSI 控制在 0.35 以下;試驗二顯示 CWSI 的不穩定,推斷為天氣因素不佳,測量時為陰天,使得無法利用 CWSI 判斷植株的水分情況,建議在使用 CWSI 進行量測時須在晴天下收集數據,避免使用上的不準確性;試驗三顯示玉米的 CWSI 確實會因為灌溉有上下的變動,故本研究認為透過 CWSI 對玉米進行灌溉時程的制定是可行的。
最後則是找尋 CWSI 與土壤水分含量之間的相關性,盼能透過CWSI 換算出土壤水分含量。結果顯示 CWSI 與 40cm 深度內之土壤水分含量平均值進行迴歸分析結果最佳,決定係數為 0.82。故本研究透過 CWSI 推估出土壤水分含量是可以取代傳統的單點測量的窘境,加快測量速度並更便於灌溉管理。
Farmers used to irrigate based on their experience, the measurement of soil moisture content, and the estimation of evapotranspiration, stem water potential, and stomatal conductance, etc. However, these methods of measure may cause soil or plants damage and can only reflect the condition in a small local area. In this study, Crop Water Stress Index (CWSI) is used as an indirect measurement to quantify the water status of corn in northern Taiwan.
In order to monitor the water status of the corn through CWSI, the experiment is done to develop the upper baseline and lower baseline of the corn in northern Taiwan, which is (𝑇𝐶 − 𝑇𝐴)𝑈 = 5.61℃ and (𝑇𝐶 − 𝑇𝐴)𝐿 = −3.06 × 𝑉𝑃𝐷 + 4.69 ℃ , respectively, with 𝑇𝐶 being leaf temperature; 𝑇𝐴 being air temperature, and VPD being the difference between the saturated vapor pressure and the actual vapor pressure. The lower baseline (𝑇𝐶 − 𝑇𝐴)𝐿 is the difference between the leaf temperature and the air temperature under the condition that the plant the plant performs potential evapotranspiration given sufficient soil water supply. The upper baseline (𝑇𝐶 − 𝑇𝐴)𝑈 is the difference between the leaf temperature and the air temperature under the condition that the plant is under water stress and is unable to perform minimum evapotranspiration.
The experiment on corn was conducted to identify CWSI under three experiments. Based on the result of the first experiment, the CWSI slightly increased to 0.35 around 2 days after the irrigation is stopped. Due to the low soil moisture, the CWSI value substantially increased to 0.8 around 3 days. Thus, it is recommended that the CWSI of the corn should be controlled under 0.35.
According to the second experiment, result shows that the CWSI is unstable. It is likely that because of the poor weather condition, the CWSI cannot indicate the status of plants. As a result, it is suggested that experiments of monitoring the water status through CWSI should only be conducted under clear days, to avoid the inaccuracy while collecting data. The third experiment shows that the CWSI of the corn did show fluctuations caused by irrigation. It is feasible to perform irrigation management of corn through the monitoring of CWSI.
The soil moisture content can be estimated by CWSI. Experiments show the coefficient of determination between CWSI and the average of soil moisture content being 0.82. It is concluded that CWSI can replace the traditional single point measurement, improve the efficiency of measurement, and make it convenient for irrigation management.
1. 古展宏,「應用藍芽於溫室作物灌溉控制之研究」,國立屏東科技大學生物機電工程所,碩士論文,2016。
2. 吳有恒,「綜合雲端服務平台之溫室無線通訊感測系統開發」,桃園區農業改良場研究彙報,第 82 期,第 61-79 頁,2017。
3. 李明達,「水分逆境下植物影像特徵分析之研究」,國立台灣大學生物產業機電工程學研究所,碩士論文,2001。
4. 周檳源,「紅外線溫度計用於火鶴葉溫量測之研究」,國立中興大學生物產業機電工程學系,碩士論文,2003。
5. 林連雄、廖宜健、張允瓊,「木本盆栽植物水分監測技術及灌溉策略」,宜蘭大學生物資源學刊,第 1-12 頁,2019。
6. 林錦源,「應用土壤含水量觀測推估蒸發散量之研究」,國立成功大學水利及海洋工程研究所,碩士論文,2006。
7. 姜善鑫,「土壤溫度和作物體溫與農作物之關係」,台灣地區農業氣象資源應用研討會專輯,第 63-70 頁,1989。
8. 徐森雄、蔡奉廷、楊婉嘉、曾金楷、吳建賢,「不同土壤之地溫、水分與熱流之變化」。作物、環境與生物資訊,第 2 卷,第 3 期,第 201-210 頁,2005。
9. 張兆成,「土壤水分含量對番茄生長的影響」,國立屏東科技大學土木工程系,碩士論文,2011。
10. 張敏德、黃裕益、盛中德,「電阻式土壤水分感測器之研究」,農林學報,第 51 卷,第 1 期,第 15-27 頁,2002。
11. 張聖瑜,「田間精密灌溉用水模式及管理機制之建立」,國立中央大學土木工程研究所,碩士論文,2015。
12. 許良瑋,「桃園埤塘輪灌系統之模擬分析」,國立中央大學土木工程研究所,碩士論文,2011。
13. 陳加忠,「土壤水分感測器之性能研究」,農業工程學報,第 43卷,第 4 期,第 87-94 頁,1997。
14. 陳柏帆,「GPS 反射訊號遙測應用於土壤溼度計算」,國立成功大學地球科學系,碩士論文,2008。
15. 曾文柄,「作物氣象」,氣象學報,第二十一卷,第三期,第 45-49 頁,1975。
16. 黃薇綺,「高溫、低溫、乾旱與淹水逆境對甘藷葉綠素螢光影響之研究」,中國文化大學生物科技研究所,碩士論文,2005。
17. 楊純明與賴小麗,「土壤缺水與農作物植體溫度之關係」,技術服務,第 34 期,第 7-9 頁,1998。
18. 劉哲維,「人工光源下盆栽灌溉系統之研究」,國立中興大學生物產業機電工程學系,碩士論文,2015。
19. 蔡欣妤,「以系統動力模式評估農業灌溉系統之研究」,國立中央大學土木工程研究所,碩士論文,2009。
20. 蔣雨芳,「黃金金露華和彩葉草之作物水分逆境指數(CWSI)與其水分狀況之研究」,國立台灣大學,碩士論文,1995。
21. 蔣德安,「植物生理學」,2018。
22. 鄧英春、許永輝,「土壤水分測量方法研究綜述」,Journal of ChinaHydrology,第 27 卷,第 4 期,2007。
23. 鄭明昇,「桃園灌區之區域迴歸水分析研究」,國立中央大學水文科學研究所,碩士論文,2007。
24. 賴靖陽,「三種海岸樹種幼苗在不同光度下生理性對水分逆境之反應」,國立宜蘭大學森林暨自然資源學系,碩士論文,2013。
25. 謝明憲,「節水省肥的滴灌栽培」,科學發展,第 496 期,第 20-26 頁,2014。
26. 蘇元風,「遙測應用於水稻水分逆境監測之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2004。
27. Abdul-Jabbar, A. S., Lugg, D. G., Sammis, T. W., Gay, L. W.,“Relationship between crop water stress index and alfalfa yield and evapotranspiration.”, Trans. ASAE, Vol.28, pp.454–461, 1985.
28. Alderfasi, A. A., Nielsen, D. C., “Use of crop water stress index for monitoring water status and scheduling irrigation in wheat.”, Agric. Water Manage., Vol.47, pp.69–75, 2001.
29. Allen, R. G., Pereira, L. S., Raes, D., Smith, M., “Crop evapotranspiration Guidelines for computing crop water requirements”, FAO Irrigation and Drainage Paper 56, electronic version29, Italy, Rome: Food and Agriculture Organization of the United Nations, 1998.
30. Cabrera J., Zotarelli L., Dukes M. D., Rowland D. L., Sargent S. A., “Soil moisture distribution under drip irrigation and seepage for potato production”, Agricultural Water Management, Vol.169, pp. 183–192, 2016.
31. Ehrler, W. L., “Cotton leaf temperature as related to soil water depletion and meteorological factors.”, Agron. J., 65, pp.404—409, 1973.
32. FAO, Guidelines for Predicting Crop Water Requirements, FAO Irrigation and Drainage Paper 24, 1984.
33. FAO, Irrigation and Drainage Paper No.56, Crop Evapotranspiration (guidelines for computing crop water requirements), pp.104-114, 2006.
34. Gardner, B. R. ,Nielsen, D. C. , Shock, C. C., ‘‘Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation.’’, J. Prod. Agric., Vol.5, pp.466-475, 1992.
35. Gutiérrez, S., Diago, M. P., Fernández-Novales, J., Tardaguila, J., ‘‘Vineyard water status assessment using on-the-go thermal imaging and machine learning.’’, PLOS ONE, 13, e0192037, 2018.
36. Han, M., Zhang, H, DeJonge, C. K., Comas,H. L. ,Gleason, S., ‘‘Comparison of three crop water stress index models with sap flow measurements in maize.’’, Agricultural Water Management, Vol.203, pp.366-375, 2018.
37. Idso, S. B., ‘‘Non-water-stressed baselines: a key to measuring and interpreting plant water stress’’, Agric. Meteorol. Vol.27, pp.59-70, 1982.
38. Idso, S. B., Jackson, R. D., Pinter, P. J., Reginato, R. J., Hatfield, J. L., ‘‘Normalizing the stress degree day parameter for envirommental variability.’’, Agricultural Meteorology, Vol.24, pp.45-55, 1981.
39. Idso, S. B., Jackson, R. D., Reginato, R. J., ‘‘Remote sensing of crop yields.’’, Science, Vol.196, pp.19-25, 1977.
40. Irmak, S., Dorota, Z. H., Bastug, H, ‘‘Determination of crop water stress index for irrigation timing and yield estimation of corn.’’, Agron. J., Vol.92, pp.1221-1227, 2000.
41. Jackson, R. D., Idso, S. B., Reginato, R. J., Pinter, P. J., ‘‘Canopy temperature as a crop water stress indicator.’’, Water Resources Research, Vol.17, pp.1133–1138, 1981.
42. Jones, H. G., ‘‘Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling.’’, Agricultural and Forest Meteorology, Vol.95, pp.139-149,1999.
43. Jones, H.G., ‘‘Irrigation scheduling: advantages and pitfalls of plantbased methods.’’ Journal of Experimental Botany, Vol.55, pp.2427– 2436, 2004.
44. Jones, H.G., ‘‘Plant water relations and implications for irrigation scheduling.’’, Acta Horticulturae, Vol.278, pp.67–76,1990.
45. Kirnak, H., Irik, H. A., Unlukara, A., ‘‘Potential use of crop water stress index (CWSI) in irrigation scheduling of drip-irrigated seed pumpkin plants with different irrigation levels.’’, Sci. Hortic., 256, 108608, 2019.
46. Moller, M., Alchanatis, V., Cohen, Y., Meron, M., Tsipris, J., Naor, A., Ostrovsky, V., Sprintsin, M., Cohen, S., ‘‘Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.’’, Journal of Experimental Botany, Vol.58, pp.827-838, 2007.
47. Moran, M.S., Clarke, T.R., Inoue Y., Vidal, A., ‘‘Estimating crop water deficit using the relation between surface air temperature and spectral vegetation index’’, Remote Sensing of Environment, Vol. 49, pp. 246–263, 1994.
48. Nielsen, D.C., and B.R. Gardner,. ‘‘Scheduling irrigations in corn with the crop water stress index (CWSI)’’, Applied Agricultural Research, 2:295–300, 1987.
49. Osroosh, Y., Peters1, T. R., Campbell, S. C., ‘‘Daylight crop water stress index for continuous monitoring of water status in apple trees’’, Irrig. Sci., Vol.34, pp.209-219, 2016.
50. Payero, J. O., Neale, C. M. U., Wright, J. L., ‘‘NON-WATERSTRESSED BASELINES FOR CALCULATING CROP WATER STRESS INDEX (CWSI) FOR ALFALFA AND TALL FESCUE GRASS’’, Transactions of the ASABE, Vol.48, pp.653-661, 2005.
51. Poblete-Echeverría, C., Espinace, D., Sepúlveda-Reyes, D., Zúñiga, M., Sanchez, M., ‘‘Analysis of crop water stress index (CWSI) for estimating stem water potential in grapevines: Comparison between natural reference and baseline approaches.’’ Acta horticulturae, Vol.1150, pp.189–194, 2017.
52. Poirier-Pocovi M, Volder A, Bailey BN, ‘‘Modeling of reference temperatures for calculating crop water stress indices from infrared thermography.’’, Agric Water Manag, 233, 106070, 2020.
53. Stegman EC. ‘‘Efficient irrigation timing methods for corn production.’’ Transactions of the ASABE 29, pp.203–210, 1986.
54. Taghvaeian, S., Chávez, J., Hansen, N., ‘‘Infrared thermometry to estimate crop water stress index and water use of irrigated maize in Northeastern Colorado.’’, Remote Sens., 4, 3619, 2012.
55. Tanner, C. B., ‘‘Plant temperatures.’’ Agron. J. Vol.55, pp.210-211, 1963.
56. Voogt, W., Balendonck, J., Wageningen, A. A., ‘‘Fertigation management in Dutch soilgrown greenhouse crops.’’, 2018.
57. Yazar, A., Howell, T.A., Dusek, D.A., Copeland, K.S., ‘‘Evaluation of water stress index for LEPA irrigated corn.’’, Irrig. Sci., Vol 18, pp.171–180, 1999.
58. Zhang, L., Zhang, H., Niu, Y., Han, W. ‘‘Mapping Maize Water Stress Based on UAV Multispectral Remote Sensing.’’, Remote Sens., Vol11,2019.