跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王俊傑
Chun-chieh Wang
論文名稱: KOH活化法裂解都市下水污泥生成吸附劑之研究
Preparation of carbon-based adsorbents from pyrolysis and KOH activation of sewage sludge
指導教授: 王鯤生
Kuen-sheng Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 111
中文關鍵詞: KOH下水污泥碳化活化
外文關鍵詞: carbonization, KOH, sewage sludge, activation
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來我國逐漸提高下水道普及率,同時也衍生出數量龐大的污泥,急待妥善之處理與資源化。本研究利用台北市迪化污水廠之厭氧下水污泥餅作為製備吸附劑之原料,利用一階段化學活化法裂解都市下水污泥製備吸附劑,並探討活化劑量、碳化時間與溫度等變數對吸附劑性質之影響,隨後以重金屬鉛、鎳、銅、鎘及鋅之吸附量為指標,建立最佳吸附劑之製備條件,以提供下水污泥資源化之可能方向。
    根據本研究XRD圖譜結果指出下水污泥物種型態以quartz為主,此外還存在著少量的albite、anorthite、kaolinite、illite及Fe phosphate hydrate等物種。根據FTIR結果分別說明當波數1000-1260 cm-1處會有C-O或O-H鍵結,在2800-3000 cm-1處可觀察C-H鍵結,3200-3600 cm-1則有N-H或O-H震動。
    最佳吸附劑製備條件部分,當每單位汙泥可吸收4毫莫耳的KOH,碳化時間為1小時,碳化溫度為600℃,此時所製備出的吸附劑產率為63.39 %,BET比表面積為235.86 m2/g,對重金屬鎘、鉛、鋅、銅及鎳吸附量依序為16.95 mg/g、28.26 mg/g、11.92 mg/g、16.25 mg/g及20.94 mg/g。
    就吸附環境而言,吸附量因pH上升而增加,較佳的環境為pH=6 (pH=1-6),此外當重金屬溶液初始濃度增加,吸附量也隨之增加,利用Langmuir吸附模式可算出鎘、鉛、鋅、銅及鎳之理論最大吸附量分別為22.47 mg/g、35.71 mg/g、14.49 mg/g、24.21 mg/g及29.76 mg/g。
    本實驗成果顯示,以KOH活化法裂解都市下水污泥製備吸附劑,不但可解決大量污泥待處理之問題,同時製備出具經濟效益之吸附劑,為一具有發展潛力之技術。


    The buildup of sewer system in Taiwan has resulted in the increasing generation of sewage sludge. For environmental concerns, the recycling of sewage sludge has been in great demand in the nation. This study investigated the preparation of activated carbon adsorbent, by using anaerobic sewage sludge from Dihua Sewage Treatment Plant as a starting material, and adopting a one-stage carbonization-activation pyrolysis process. The feasibility study focuses on the effects of operational parameters, such as pyrolysis time, temperature, and concentration of activator (i.e., KOH), on the characteristics of the carbonized adsorbent.
    The results indicate that quartz was identified by XRD technique as major crystal species in the starting sewage sludge, while with the presence of small amounts of albite, anorthite, kaolite, illite and Fe phosphate hydrate. As shown by FTIR spectrum of the carbonized sludge, C-O and O-H bonds were identified at wavenumber 1000-1260 cm-1, and C-H bond at 2800-3000 cm-1, as well as N-H and O-H at 3200-3600 cm-1, respectively.
    The carbonized sludge with high sorbent performance could be obtained by heating the KOH-treated (i.e., soaked with 4 mmole KOH per gram of dry sludge) sludge at 600 ℃ for one hour. This yielded 63.39 w/w% carbonized adsorbent, with a BET surface area reaching 235.86 m2/g. Moreover, the adsorption performances, as tested by Cd, Pb, Zn, Cu, and Ni, (i.e., at an initial heavy metal concention of 1000 mg/L, and pH<1) were ranged from 16.95 mg/g, 28.26 mg/g, 11.92 mg/g, 16.25 mg/g to 20.94 mg/g, respectively.
    The adsorption capacities of the carbonized sludge adsorbent, however, was pH-dependent (i.e., optimum at pH=6 in the tested range pH=1-6), and increased with increasing initial concentration of heavy metal. In this study, the maximum theoretical absorption capacities as estimated by Langmuir model for Cd, Pb, Zn, Cu, and Ni were found to be 22.47 mg/g, 35.71 mg/g, 14.49 mg/g, 24.21 mg/g, and 29.76 mg/g, respectively.
    The results of this study suggest that preparation of carbonized sludge adsorbent, using sewage sludge as starting material and adopting a one-stage pyrolysis with KOH as activator is not only technique feasible but also material recycling-benificial.

    第一章 前言 1 1.1 研究緣起與目的 1 1.2 研究內容 2 第二章 文獻回顧 3 2.1 下水污泥之來源與特性 3 2.1.1 下水污泥之產出 3 2.1.2 下水污泥的組成性質 6 2.2 下水污泥的處理處置方法 8 2.2.1 下水污泥處理之目的 8 2.2.2 下水污泥最終處置與再利用 8 2.3 活性碳吸附劑製備原理與機制 12 2.3.1 碳化反應 12 2.3.2 活化反應 14 2.3.3 影響比表面積的因素 16 2.3.4 活性碳之應用 17 2.4 吸附原理 19 2.4.1 吸附理論 19 2.4.2 吸附模式 20 2.4.3 影響吸附效果之因子 21 2.5 熱裂解之相關研究文獻 23 第三章 實驗材料與方法 34 3.1 實驗材料 34 3.2 實驗方法 34 3.4 實驗步驟 36 3.5 實驗條件配置 37 3.6 決定最佳吸附劑之指標 39 3.7 重金屬吸附試驗 39 3.8 研究設備 43 3.8.1 熱裂解反應設備 43 3.8.2 分析儀器 44 3.9 實驗分析方法 46 第四章 結果與討論 52 4.1 下水污泥基本性質 52 4.1.1 物理性質 52 4.1.2 化學性質 54 4.1.3 表面性質 58 4.2 初步吸附重金屬效果以決定最佳製備條件 59 4.3 吸附劑物理特性分析結果 63 4.3.1 製備條件對產率之探討 63 4.3.2 製備條件對比表面積之探討 65 4.3.3 製備條件對吸附劑孔隙體積之探討 69 4.3.4 製備條件對吸附劑孔徑分佈之探討 81 4.3.4.1 BJH孔徑分析 81 4.3.4.2 微孔孔徑分析 83 4.3.5 吸附劑SEM微結構觀察 86 4.4 吸附劑化學特性分析結果 89 4.4.1 製備條件對吸附劑元素分析之探討 89 4.4.2 製備條件對吸附劑重金屬總量之探討 91 4.4.3 製備條件對吸附劑物種型態之影響 94 4.4.4 製備條件對吸附劑紅外線光譜之鑑定 96 4.5 吸附環境之探討 98 4.5.1 重金屬初始濃度對吸附效果之影響 99 4.5.2 pH值對吸附效果之影響 103 第五章 結論與建議 104 5.1 結論 104 5.2 建議 106 參考文獻 107

    1.內政部營建署網站 (http://www.cpami.gov.tw/web/index.php)。
    2.瑞士洛桑管理學院網站 (http://www.imd.ch/)。
    3.歐陽嶠暉,台灣下水道發展策略,台灣下水道協會,(2001)。
    4.歐陽嶠暉,都市污水處理廠之污泥處理與資源化再利用之研究,內政部營建署委託研究計畫,(1998)。
    5.林正芳、洪文宗,「都市汙水廠汙泥熱裂解之資源化研究」,國立台灣大學環境工程學研究所碩士論文,(1996)。
    6.Sajda Shaheen Chishti, S. Nazrul Hasnain and M. Altaf Khan, “Studies on the recovery of sludge protein” Water Research, 26, pp. 241-248 (1992).
    7.歐陽嶠暉,下水道工程學,長松出版社,(1995)。
    8.I. C. Lewis, “Chemistry of Carbonization.” Carbon, 20 , pp.519-529 (1982).
    9.楊義榮,廢棄物加熱分解處理法,工業污染防治,第四卷,第三期,pp. 109-135,(1985)。
    10.F. Rodríguez-Reinoso, Molina-Sabio, M. and M. T. Gonzalez, “The use of
    steam and CO2 as activating agents in the preparation of activated carbons”, Carbon, 33, pp.15-23 (1995).
    11.F. Caturla, M. Molina-Sabio, and F. Rodrfguez-Reinoso, “Preparation of
    activated carbon by chemical activation with ZnCl2” Carbon, 29, pp.999-1007 (1991).
    12.劉曾旭,活性碳製造技術及應用,產業調查與技術,127,pp.84-97,(1998)。
    13.A. Ahmadpour and D. D. Do, “The preparation of active carbons from coal by chemical and physical activation” Carbon, 34, pp.471-479 (1996).
    14.H. Teng and L.-Y Hsu, “Preparation of activated carbons from bituminous coals with zinc chloride activation.” Ind. Eng. Chem., 37, pp.58 (1998).
    15.P. Ehrburger, A. Addoun, F. Addoun and J. B. Donnet, “Carbonization of coals in the presence of alkaline hydroxides and carbonates: formation of activated carbons” Fuel, 65, pp.1447 (1986).
    16.Y. Yamashita and K. Ouchi, “Influence of alkail on the carbonization process carbonization of 3,5-dimethylphenol-formaldehyde resin with NaOH” Carbon, 20, pp.41 (1982).
    17.徐禮業,「以化學活化法由煤製備高孔隙碳材料」,國立成功大學化學工程學系碩士論文,(1999)。
    18.P. L. Walker and Jr. A. Almagro, “Activation of pre-chlorinated anthracite in carbon dioxide and steam” Carbon, 33, pp.239-241 (1995).
    19.N. Meunier, J. Laroulandie, J.F. Blais, R.D. Tyagi, “Cocoa shells for heavy metal removal from acidic solutions” Bioresource Technology, 90, pp.255-263 (2003).
    20.S. H. Gharaibew, Wail Y. Abu-el-Sha''R, M. M. Al-Kofahi, “Removal of selected heavy metals from aqueous solutions using processed solid residue of olive mill products” Water Research, 32, pp.498-502 (1998).
    21.S. H. Abdel-Halim, A. M. A. Shehata, M. F. El-Shahat, “Removal of lead ions from industrial waste water by different types of natural materials” Water Research, 37, pp.1678-1683 (2003).
    22.C. Faur-Brasquet, K. Kadirvelu, P. Le Cloirec, “Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter” Carbon, 40, pp.2387-2392 (2002).
    23.K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, “Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith” Separation and Purification Technology, 24, pp.497-505 (2001).
    24.Yunbo Zhai, Xianxun Wei, Guangming Zeng, Dejian Zhang, Kaifeng Chu, “Study of adsorbent derived from sewage sludge for the removal of Cd+2,Ni+2 in aqueous solutions” Separation and Purification Technology, 38, pp.191-196 (2004).
    25.M. Madhava Rao, A. Ramesh, G. Purna Chandra Rao, K. Seshaiah, “Removal of copper and cadmium from the aqueous solutions by activated
    carbon derived from Ceiba pentandra hulls” Journal of Hazardous Materials, B129, pp.123-129 (2006).
    26.Meenakshi Goyal, V. K. Rattan, Diksha Aggarwal, R. C. Bansal, “Removal of copper from aqueous solutions by adsorption on activated carbons” Colloids and Surfaces, 190, pp.229-238 (2001).
    27.Y. Nuhoglu, E. Oguz, “Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis” Process Biochemistry, 38, pp.1627-1631 (2003).
    28.M. Helen Kalavathy, T. Karthikeyan, S. Rajgopal, Lima Rose Miranda, “Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust” Journal of Colloid and Interface Science, 292, pp.354-362 (2005).
    29.Polymnia Galiatsatou, Michail Metaxas, Vasilia Kasselouri-Rigopoulou, “Adsorption of zinc by activated carbons prepared from solvent extracted olive pulp” Journal of Hazardous Materials, B91, pp.187-203 (2002).
    30.R. Leyva Ramos, L.A. Bernal Jacome, J. Mendoza Barron, L. Fuentes Rubio, R.M. Guerrero Coronado, “Adsorption of zinc(II) from an aqueous
    solution onto activated carbon” Journal of Hazardous Materials, B90, pp.27-38 (2002).
    31.C. Namasivayam and K. Ranganathan, “Removal of Cd(II) from wastewater by adsorption on "waste" Fe(III)/Cr(III) hydroxide” Water Research, 29, pp.1737-1744 (1995).
    32.K. Kadirvelu, C. Namasivayam, “Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution” Advances in Environmental Research, 7, pp.471-478 (2003).
    33.D. M. Ruthven, “Principles of adsorption & adsorption process”, New York (1984).
    34.M. Suzuki, “Adsorption engineering ” Amsterdam, pp.35-51, (1990).
    35.陳弘彬,「孟宗竹碳與活性碳之研製」,國立屏東科技大學森林系研究所碩士論文,(2003)。
    36.D. Ramirez, P. D. Sullivan, M. J. Rood and J. K. Hay, “Equilibrium adsorption of phenol-, tire-, and coal-derived activated carbons for organic vapors” Journal of Environmental Engineering, 130, pp. 231-241 (2004).
    37.J. Zogorski and S. D. Faust, “Equilibria of adsorption of phenol by granular activated carbon” Chemistry of Wastewater Technology, Ann Arbor Science Publishers (1978).
    38.J.H. Tay, X.G. Chen, S. Jeyaseelan, N. Graham, “Optimising the preparation of activated carbon from digested sewage sludge and coconut husk.” Chemosphere, 44, pp.45-51 (2001).
    39.Naozumi Kojima, Aki Mitomo, Yoshinori Itaya, Shigekatsu Mori, Shuichi Yoshida, “Adsorption removal of pollutants by active cokes produced from sludge in the energy recycle process of wastes.” Waste Management, 22, pp.399-404 (2002).
    40.A. Mendez, G. Gasco, M.M.A. Freitas, G. Siebielec, T. Stuczynski, J.L. Figueiredo, “Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges” Chemical Engineering Journal, 108, pp.169-177 (2005).
    41.Ana Mendez, Gabriel Gasco, “Optimization of water desalination using carbon-based adsorbents” Desalination, 183, pp.249-255 (2005).
    42.A. Ros, M.A. Lillo-Rodenas, E. Fuente, M.A. Montes-Moran, M.J. Martin, A. Linares-Solano, “High surface area materials prepared from sewage sludge-based precursors” Chemosphere, 65, pp.132-140 (2006).
    43.Charothon Jindarom, Vissanu Meeyoo, Boonyarach Kitiyanan, Thirasak Rirksomboon, Pramoch Rangsunvigit, “Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge” Chemical Engineering Journal, 133, pp.239-246 (2007).
    44.F. Rozada, M. Otero, A. Moran, A.I. Garca, “Adsorption of heavy metals onto sewage sludge-derived materials” Bioresource Technology, article in press (2008).
    45.Chang Hun Yun, Yun Heum Park and Chong Rae Park, “Effects of pre-carbonization on porosity development of activated carbons from rice straw” Carbon, 39, pp.559-567 (2001).
    46.W.T. Tsai, C.Y. Chang, S.Y. Wang, C.F. Chang, S.F. Chien and H.F. Sun, “Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2”Bioresource Technology, 78, pp.203-208 (2001).
    47.J. Guo and A. C. Lua, “Surface functional groups on oil-palm-shell adsorbents prepared by H3PO4 and KOH activation and their effects on adsorptive capacity” Institution of Chemical Engieers, 81, pp.585-590 (2003).
    48.Ting Yang and Aik Chong Lua, “Characteristics of activated carbons prepared from pistachio-nut shells by physical activation” Journal of Colloid and Interface Science, 267, pp.408-417 (2003).
    49.Gulnaziya Issabayeva, Mohamed Kheireddine Aroua, Nik Meriam Nik Sulaiman, “Removal of lead from aqueous solutions on palm shell activated carbon” Bioresource Technology, 97, pp.2350-2355 (2006).
    50.Vimal Chandra Srivastava, Indra Deo Mall, Indra Mani Mishra, “Adsorption of toxic metal ions onto activated carbon Study of sorption behaviour through characterization and kinetics” Chemical Engineering and Processing, 47, pp.1269-1280 (2008).
    51.Xue-song Wang, Yong Qin, “Equilibrium sorption isotherms for of Cu2+ on rice bran” Process Biochemistry, 40, pp.677-680 (2005).
    52.P. J. M. Carrott, M. M. L. Ribeiro Carrott, J. M. V. Nabais and J. P. Prates Ramalho, “Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons” Carbon, 35, pp.403-410 (1997).
    53.R. Leyva-Ramos, J.R. Rangel-Mendez, J. Mendoza-Barron, L. Fuentes-Rubio and R.M. Guerrero-Coronado, “Adsorption of cadmium(ii) from aqueous solution onto activated carbon” Water Science and Technology, 35, pp.205-211 (1997).
    54.M. Inguanzo, J.A. Mene´ndez, E. Fuente, J.J. Pis, “Reactivity of pyrolyzed sewage sludge in air and CO2” Journal of Analytical and Applied Pyrolysis, 58-59, pp.943-954 (2001).
    55.Julia Ayala, Francisco Blanco, Purificacibn Garcia, Penelope Rodriguez and Jose Sancho, “Asturian fly ash as a heavy metals removal material” Fuel, 77, pp.1147-1154 (1998).
    56.C.H. Weng, C.P. Huang, Herbert E. Allen, A.H-D. Cheng and Paul F. Sanders, “Chromium leaching behavior in soil derived from chromite ore processing waste” Science of The Total Environment, 54, pp.71-86 (1994).
    57.S. Ahrland, J. Chatt, N. R. Davies, Chem. Soc., Review 12, pp.265 (1958).
    58.H. Teng and L.-Y Hsu, “High-porosity carbons prepared from bituminous coal with potassium hydroxide activation” Ind. Eng. Chem. Res., 38, pp.2947 (1999).
    59.M. J. Illán-Gómez, C. Garcia-Garcia, C. Salinas-Martinez de Lecea and A. Linares-Solano, “Activated carbons from spanish coal by chemical activation.” Energy Fuels, 10, pp.1108 (1996).

    QR CODE
    :::