跳到主要內容

簡易檢索 / 詳目顯示

研究生: 梁凱倫
LEONG HOI LON
論文名稱: 以建築資訊模型結合3D遊戲引擎呈現實時太陽能板資訊
Applying Building Information Modeling and 3D Game Engine to Demonstrate Real-time Solar Module Information
指導教授: 周建成
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 76
中文關鍵詞: 太陽能數位雙生建築資訊模型Arduino視覺化
外文關鍵詞: Solar Energy, Digital Twin, Building Information Model, Arduino, Visualization
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今能源使用需求快速增長,燃燒化石能源所產生的大量二氧化碳將加劇全球溫室效應,空氣污染和氣候變遷等問題,世界各國都希望能減少使用化石能源,轉移大量發展再生能源來替代化石能源,而太陽能作為再生能源中最具發展潛力的能源之一,將其結合數位雙生的概念,減少太陽能於維運期間所消耗的人力物力,促進太陽能於民間市場廣泛使用,期望能增加再生能源的使用性。
    本研究根據數位雙生的概念,透過微處理器建立太陽能板數據收集工具,將數據結合建築資訊模型,再使用遊戲引擎建立視覺化系統,以3D房屋展示數據,對數位雙生的發展作出貢獻。


    Nowadays, the demand for energy is growing rapidly. The large amount of carbon dioxide produced by using fossil energy is aggravating the global greenhouse effect, air pollution and climate change. Countries all over the world hope to reduce the use of fossil energy and to replace it by a large amount of renewable energy. Solar energy is one of the most promising sources of renewable energy. Combining it with the concept of digital twin, the required manpower and material resources during maintenance and operations can be reduced. It can also promote the widespread use of solar energy in the market, and increase the use of renewable energy.
    Based on the concept of digital twin, solar panel data collection tools were created using microprocessors in this research. Combining data with building information models, a 3D visualization system was built using game engines to display the collected data and hope this can have contribution to the development of digital twin.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究問題與目的 2 1-3 研究範圍與限制 2 1-4 研究流程 3 1-5 論文結構 3 第二章 文獻回顧 5 2-1再生能源 5 2-2 太陽能的發展 5 2-2-1太陽能模組 9 2-2-2太陽能模組現行監測方式 13 2-2-3地面型太陽能模組 14 2-2-4屋頂型太陽能模組 15 2-2-5建築整合太陽能 17 2-3 數位雙生 20 2-3-1定義 20 2-3-2數位雙生的誤解 21 2-3-3數位雙生的應用 22 2-4 文獻評析 23 第三章 方法分析 24 3-1資料收集工具 24 3-1-1 Arduino UNO 24 3-1-2監測參數定義 25 3-1-3硬體規劃設計 25 3-1-4硬體規格 25 3-1-5硬體設計 27 3-1-6軟體設計 28 3-2資料收集成果 30 3-2-1受測環境 30 3-2-2結果分析 30 3-3 BIM模型轉檔 32 3-3-1 3ds Max匯入Revit模型 33 3-3-2使用3ds Max內的場景轉換器轉換材質 36 3-3-3將3dx Max匯出的FBX檔匯入Unity遊戲引擎中 39 第四章 實證分析 41 4-1 系統實作流程 41 4-2 IV曲線的其他呈現方法 51 第五章 結論與建議 55 5-1 結論 55 5-2 未來展望與建議 56 5-3 貢獻 58 參考文獻 59 評審意見回覆表 61

    1. AbuBakr S. Bahaj. (2003). Photovoltaic roofing: issues of design and integration into buildings. Renewable Energy, 28(14), 2195-2204.
    2. Bull, S. R., (2001). Renewable energy today and tomorrow, Proceedings of the IEEE, 89(8), 1216-1226. doi: 10.1109/5.940290.
    3. E. Leccisi, M. Raugei, V. Fthenakis. (2016). The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update. Energie, 9(8), 622.
    4. Enli Wiki, Inc. (2020). 一看就懂的太陽能電池基礎原理. Retrieved March 2, 2021. From https://reurl.cc/9Zv4bd

    5. F. Salvo, M. Ciuna, M. De Ruggiero, S. Marchianò. (2017). Economic Valuation of Ground Mounted Photovoltaic Systems. Buildings, 7(2), 54.
    6. Fuentes, M., Vivar, M., Burgos, J. M., Aguilera, J., & Vacas, J. A. (2014). Design of an accurate, low-cost autonomous data logger for PV system monitoring using Arduino™ that complies with IEC standards. Solar Energy Materials and Solar Cells, 130, 529-543.
    7. International Energy Agency, IEA. (2020). Renewables 2020. Retrieved November 30, 2020. From https://www.iea.org/reports/renewables-2020

    8. Krishna, M. S. R., Dinesh, K., & Shanbog, N. S. (2019). Low Cost Remote Monitoring of Solar Plant through RS485 Communication. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(9), 3034-3037.
    9. Madeti, S. R., and Singh, S. N. (2017). Monitoring system for photovoltaic plants: A review. Renewable and Sustainable Energy Reviews, 67, 1180-1207.
    10. Materialsnet, Inc. (2008). 太陽電池量測技術. Retrieved March 24, 2021. From https://www.materialsnet.com.tw/docview.aspx?id=7004

    11. Office of Energy Efficiency and Renewable Energy, EERE. (n. d. ). Solar Photovoltaic Technology Basics. Retrieved March 2, 2021. From https://www.energy.gov/eere/solar/solar-performance-and-efficiency

    12. Papageorgas, P., Piromalis, D., Antonakoglou, K., Vokas, G., Tseles, D., & Arvanitis, K. G. (2013). Smart solar panels: In-situ monitoring of photovoltaic panels based on wired and wireless sensor networks. Energy Procedia, 36, 535-545.
    13. Parida B., Iniyan S., Goic R. (2011). A review of solar photovoltaic technologies, Renew Sustain Energy, 15(3), 1625-1636.
    14. Parikh, A., Pathan, F., Rathod, B., & Shah, S. (2015). Solar panel condition monitoring system based on wireless sensor network. International Journal of Science, Engineering and Technology Research (IJSETR), 4(12), 4320-4324.
    15. Sampaio, P. G. V., & M.O.A. González (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews, 74, 590-601.
    16. Solar cell efficiency (n.d.). In Wikipedia. Retrieved March 2, 2021. From https://en.wikipedia.org/wiki/Solar_cell_efficiency#cite_ref-Energy_Efficiency_and_Renewable_Energy_4-0

    17. Whole Building Design Guide. (2016). Building Integrated Photovoltaics (BIPV). Retrieved January, 2021, from https://www.wbdg.org/resources/building-integrated-photovoltaics bipv?r=env_preferable_products#desc
    18. 丸川知雄,(2010).シャ-プvsサンテツクvsファ-ストソ-ラ,エコノミスト, 88(19), 81-83.
    19. 浜上湘路,(2010).脚光あびる太陽光発電, 石油政策, 49(6), 6-13.
    20. 經濟部能源局. (2019). 全力衝刺太陽光電. 取自https://www.re.org.tw/information/more.aspx?cid=192&id=3284
    21. 潔光能源股份有限公司, Inc. 監控系統. 取自http://www.energyguard.com.tw/zh_TW/awards

    QR CODE
    :::