| 研究生: |
陳政諭 Cheng-yu Chen |
|---|---|
| 論文名稱: |
森林上方粗糙次層之風洞實驗 Wind Tunnel Experiment of Roughness Sublayer above the Plant Canopy |
| 指導教授: |
朱佳仁
Chia-Ren Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 風洞實驗 、樹冠層 、森林流場 、粗糙次層 |
| 外文關鍵詞: | Wind tunnel experiment, Mixing layer flow, Plant canopy, Roughness Sublayer |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣與森林之間的動量、熱量和質量(水汽、二氧化碳、氧氣、種子、花粉等)的傳輸不僅會影響到植物的呼吸與光合作用,亦對森林區的蒸發散和地表附近的微氣候有重大的影響,為全球環境的變遷中重要的一環。本研究以一系列的風洞實驗來探討森林樹冠層附近的紊流風場,實驗中放置模型樹於風洞中的紊流邊界層之中,並改變樹木的排數,在不同的下風距離量測平均風速和紊流參數,以瞭解紊流流場的相關性,以釐清單排與雙排樹的尾流與多排樹木的森林的粗糙次層之間的影響。本研究也探討了樹木孔隙率與阻力係數之間的關係,並量測不同孔隙率障礙物之下風處建築物表面的壓力係數,探討樹木所產生的遮蔽效應。
The turbulence transport of momentum, heat and mass (water vapor, CO2, O2, seed and pollen) between the plant canopies and atmosphere not only affect the photosynthesis, evaporation and transpiration of plants, but also influence the micro-meteorology of forest area. This study used wind tunnel experiments to investigate the turbulent flow above the plant canopy and the wake flow of the canopy. Mean velocity profiles and turbulence parameters are measured at several down-wind distances. The friction velocity u** calculated from the logarithmic profile and the friction velocity u*c computed from the Reynolds stress are in good agreement. This study also investigates the influence of porosity on the drag coefficient and the friction factor of the canopy. The experimental results indicate that the drag coefficient is much larger than the friction factor.
[1] Amiro, B.D. 1990, Drag coefficients and turbulence spectra within three boreal forest canopies, Boundary-Layer Meteorol. 52, 3, 227-246.
[2] Banarjee, T., Katul, G.G. Fontan, S. Poggi, D. and M. Kumar. 2013, Mean flow near edges and within cavities situated inside dense canopies, Boundary-Layer Meteorol. 49, 14-41.
[3] Belcher S.E., Jerram N., and Hunt J.C.R. 2003, Adjustment of a turbulent boundary layer to a canopy of roughness elements, J. Fluid Mech. 488, 369-398.
[4] Lalic, B., Mihailovic, D.T. Rajkovic, B., Arsenic, I.D. and Radlovic, D. 2003, Wind profile within the forest canopy and in the transition layer above it. Environmental Modeling & Software, 18, 943-950.
[5] Boldes, U., Colman, J. and M. Di Leo J. 2001, Field study of the flow behind single and double row herbaceous windbreaks. J. Wind Engineering and Industrial Aerodyn. 89 (7-8), 665-687.
[6] Belcher S.E., Harman, I.N. and Finnigan, J. J. 2012, The wind in the willows: Flows in forest canopies in complex terrain. Ann. Rev. Fluid Mech. 44, 479-504.
[7] Brunet, Y., Finnigan, J. J. and Raupach M. R. 1993, A wind tunnel study of air flow in waving wheat: single-point velocity statistics, Boundary-Layer Meteorol. 81, 95-132.
[8] Chu, C.R., Parlange, M.B., Katul, G.G. and Albertson, J.D. 1996, Probability density functions of turbulent velocity and temperature in the atmospheric surface layer, Water Resources Research, 32, 6, 1681-1688.
[9] Cionco, R.M. 1965, A mathematical model for air flow in a vegetative canopy. Journal of Applied Meteorology, 4, 517-522.
[10] Coppin, P.A., Raupach, M.R. and Legg, B.J. 1986, Experiments on scalar dispersion within a source. Boundary-Layer Meteorol. 35, 167-191.
[11] Chen, Z. Jiang, C. and Nepf, H. 2013, Flow adjustment at the leading edge of a submerged aquatic canopy, Water Resources Research, 49, 5537-5551.
[12] Collins, D.C. and Avissar, R. 1994, An evaluation with the Fourier amplitude sensitivity test (FAST) of which land-surface parameters are of greatest importance in atmospheric modeling. Journal of Climate,7(5), 681-703.
[13] Dumbauld, R.K. and Cionco, R.M. 1985, A method for characterizing turbulence and wind speed profiles within and above vegetative canopies. 17th Conference Agricultural and Forest Meteorology and 7th Conference Biometeorology and Aerobiology, 120-123.
[14] Finnigan, J. J. 1979, Turbulence in waving wheat II. Structure of momentum transfer. Boundary-Layer Meteorol. 16, 213-236.
[15] Finnigan, J. J. 2000, Turbulence in plant canopies. Ann. Rev. Fluid Mech. 32, 519-571.
[16] Finnigan, J. J. and Shaw, R. H. 2000, A wind-tunnel study in wheat: an EOF analysis of the structure of the large-eddy motion. Boundary-Layer Meteorol. 96, 211-255.
[17] Gardiner, B. A. 1994, Wind and wind forces in a plantation spruce forest. Boundary-Layer Meteorol. 67, 161-186.
[18] Ghisalberti, M. and Nepf, H.M. 2002, Mixing layers and coherent structures in vegetated aquatic flow. J. Geophys. Research, 107, C2, 1-11.
[19] Irvine, M. R., Gardiner, B. A. and Hill, M. K. 1997, The evolution of turbulence across a forest edge. Boundary-Layer Meteorol. 84, 467-496.
[20] Katul, G. G., Parlange, M.B. and Chu, C.R. 1994, Intermittency, local isotropy and non-Gaussian statistics in atmospheric surface layer turbulence, Physics of Fluids, 6 (7), 2480-2492.
[21] Katul, G. G., Poggi, D. Cava, D. and Finnigan, J.J. 2006, The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer, Boundary-LayerMeteorol. 120, 367-375.
[22] Katul, G. G. and Chu, C. R. 1998, A theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary layer, Boundary-Layer Meteorol. 86 (2), 279-312.
[23] Katul, G. G., Mahrt, L. Poggi, D., and Sanz, C. 2004, One- and two-equation models for canopy turbulence. Boundary-Layer Meteorol. 113, 81-109.
[24] Massman, W. 1987, A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies. Boundary-Layer Meteorol. 40, 179-197.
[25] Mihailovic, D.T., Lalic, B. Rajkovic, B. and Arsenic, I. 1999, A roughness sublayer wind profile above non-uniform surface. Boundary-Layer Meteorol. 93, 425-451.
[26] Poggi, D., Katul, G. G. and Albertson, J. D. 2004, Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary-Layer Meteorol. 111, 589-614.
[27] Poggi, D., Katul, G.G., and Albertson J.D. 2004, A note on the contribution of dispersive fluxes to momentum transfer within canopies, Boundary-Layer Meteorol. 111(3), 615-621.
[28] Poggi, D., Katul, G. and Vidakovic, B. 2011, The role of wake production on the scaling laws of scalar concentration fluctuation spectra inside dense canopies. Boundary-Layer Meteorol. 139, 83-95.
[29] Pope, S.B. 2000, Turbulent Flows, Cambridge University Press, UK.
[30] Raupach, M.R., Coppin, P.A., and Legg, B.J. 1986, Experiments on scalar dispersion within a model plant canopy. Part I: The turbulence structure. Boundary-Layer Meteorol. 35, 21-52.
[31] Rominger, J. and Nepf, H. 2011, Flow adjustment and interior flow associated with a rectangular porous obstruction, J. Fluid Mech. 680, 636-659.
[32] Raupach, M.R, Antonia, R. A., and Rajagopalan, S. 1991, Rough-wall turbulent boundary layers. Applied Mechanics Review, 44, 1-25.
[33] Raupach, M.R. 1992 Drag and drag partition on rough surfaces. Boundary-Layer Meteorol. 60, 375-385.
[34] Shaw, R.H., Brunet, Y., Finnigan, J.J., and Raupach, M.R. 1995, A wind tunnel study of air flow in waving wheat: Two-point velocity statistics. Boundary-Layer Meteorol. 76, 349-376.
[35] Shaw, R.H., Tavanger, J. and Ward, D.P. 1983, Structure of the Reynolds stress in canopy layer. J. Clim. Applied Meteorol. 22, 1922-1931.
[36] Schwartz, R.C., Fryrear, D.W., Harris, B.L., Bilbro, J.D. and Juo, A.S.R. 1995, Mean flow and shear stress distributions as influenced by vegetative windbreak structure. Agri. and Forest Meteorol. 75, 1-22.
[37] White, B. and Nepf, H.M. 2003, Scalar transport in random cylinder arrays at moderate Reynolds number. J. Fluid Mech. 487, 43-79.
[38] 方偉德 2004, 大氣與森林之間紊流流場之風洞驗,中央大學土木系碩士論文