跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳逸宏
Yi-Hung Chen
論文名稱: 公共自行車系統之旅次分佈預測-以台中市沙鹿區為例
Prediction of Bike Sharing System Trip Distribution - A Case Study of Shalu District, Taichung City
指導教授: 陳惠國
Huey-Kuo Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 64
中文關鍵詞: 公共自行車站點旅次發生旅次分佈統計模型機器學習深度重力模型
外文關鍵詞: Public Bicycle Stations, Trip Generation, Trip Distribution, Statistical Models, Machine Learning, Deep Gravity Model
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 公共自行車系統(Bicycle-Sharing System, BSS)作為解決公共運輸第一和最後一哩路問題的關鍵,各國政府積極推動其發展並不斷增設新站點。然而,隨著站點增加,BSS的騎乘路線和調度變得複雜,而需要更多資源來優化調度策略和規劃騎乘環境建置。本研究提出一種基於旅運需求預測的旅次分佈長期預測模型,旨在有效預測新設站點建立後的旅次分佈並針對其安排高效的調度策略以及騎乘環境建置成本投入區域。
    而在進行旅運需求預測中的旅次發生借車量與還車量的預測,本研究探討議題將牽涉到具備歷史票證資料的既有站點和欠缺歷史票證資料的新設站點,兩種站點形式,有鑑於時間序列資料分析法相對於利用變數推估在預測上有更高的精度,對於既有站點以時間序列資料分析為主提出了統計模型的差分整合移動平均自我迴歸模型(ARIMA)和季節性差分整合移動平均自我迴歸模型(SARIMA)和機器學習的長短期記憶(LSTM)和閥控遞迴單元(GRU)進行預測與比較,比較結果發現LSTM有最佳的預測精度;新設站點則利用氣候、人口、土地使用和周遭站點使用四個主要影響BSS借車量與還車量的因素,並應用統計模型的多元迴歸模型(MLR)和機器學習的極限梯度提升(XGBoost)進行預測和比較,XGBoost 有最佳的預測精度。因此本研究旅次發生階段則採納LSTM和XGBoost分別對既有站點和新設站點進行預測。旅次分佈則是應用傳統的重力模型與深度學習結合而成的深度重力(DG)模型,並以旅運需求預測程序為主要的概念,旅次發生的輸出結果加上距離作為旅次分佈的輸入,對BSS進行旅次分佈的預測,預測結果為0.7884,成功地捕捉到BSS旅次分佈樣態。
    最後透過旅次分佈的結果配合新設站點的站點特性,發現若站點是以休閒觀光特性為主,則會以其他包含休閒光觀特性的站點為主要往來;住宅區則以前往休閒光觀景點、交通節點和就學為主要用途。


    The Bicycle-Sharing System (BSS) is a key solution to the first and last mile problem in public transportation. Governments worldwide actively promote its development by continuously adding new stations. However, as the number of stations increases, BSS routes and dispatching become more complex, requiring more resources to optimize dispatch strategies and plan the riding environment. This study proposes a trip distribution prediction model based on travel demand prediction to effectively predict trip distribution after the establishment of new stations and to arrange efficient dispatch strategies and investment areas for the construction of the riding environment.
    In predicting the number of borrowings and returns of trips in travel demand forecasting, this study explores the issues related to both existing stations with historical ticket data and new stations lacking this data. Given that time series analysis methods show higher accuracy than variable-based estimates, for existing stations, this study proposes the statistical models: the Autoregressive Integrated Moving Average (ARIMA) model, the Seasonal Autoregressive Integrated Moving Average (SARIMA) model, and machine learning models: the Long Short-Term Memory (LSTM) model and the Gated Recurrent Unit (GRU) model; and performs predictions and comparisons. Results indicate that LSTM has the best prediction accuracy. For new stations, the study utilizes four main factors that influence BSS borrowings and returns: climate, population, land use, and the usage of surrounding stations, and applies the statistical Multiple Linear Regression (MLR) model and the machine learning Extreme Gradient Boosting (XGBoost) model for predictions and comparisons, with XGBoost showing the best prediction accuracy. Therefore, this study adopts LSTM and XGBoost for predicting the trip generation of existing and new stations, respectively.For trip distribution, the study employs a Deep Gravity (DG) model, combining traditional gravity models with deep learning, using the travel demand prediction process as the main concept. The output results of trip generation, combined with distance, serve as inputs for trip distribution prediction. The prediction result has an R² value of 0.7884, accurately capturing the BSS trip distribution patterns.
    Finally, through the trip distribution results and the characteristics of new stations, the study finds that if a station primarily serves recreational and tourism purposes, it will predominantly interact with other stations with similar characteristics. Residential areas mainly travel to recreational spots, transportation nodes, and educational institutions.

    目錄 摘要 ............................................................................................................................................. i Abstract ....................................................................................................................................... ii 目錄 ........................................................................................................................................... vi 圖目錄 ..................................................................................................................................... viii 表目錄 ....................................................................................................................................... ix 第一章 緒論 ............................................................................................................................... 1 第二章 文獻回顧 ....................................................................................................................... 4 2-1 公共自行車系統車輛調度問題 ...................................................................................... 4 2-2 旅次發生預測模型 .......................................................................................................... 6 2-3 旅次分佈預測模型 .......................................................................................................... 9 第三章 研究方法 ..................................................................................................................... 12 3-1 旅運需求預測程序:旅次發生、旅次分佈 ................................................................ 12 3-2旅次發生預測模型 ........................................................................................................ 12 3-2-1 既有站點 ................................................................................................................. 13 3-2-2 新設站點 ................................................................................................................. 19 3-3 旅次分佈預測模型 ........................................................................................................ 22 3-4 評估指標 ........................................................................................................................ 23 第四章 模型驗證與架構 ......................................................................................................... 24 4-1 旅次發生模型建立與驗證 ............................................................................................ 24 4-1-1 既有站點預測結果比較 ......................................................................................... 25 4-1-2 新設站點預測結果比較 ......................................................................................... 26 4-2 旅次分布模型建立與預測 ............................................................................................ 28 4-3 預測模型架構 ................................................................................................................ 29 第五章 模型應用 ..................................................................................................................... 31 5-1 站點使用狀態分析 ........................................................................................................ 32 5-2 新設站點之旅次分佈 .................................................................................................... 33 5-3 新設站點旅次分佈特性分析 ........................................................................................ 35 vii 第六章 結論與建議 ................................................................................................................. 38 參考書目 .................................................................................................................................. 42

    [1] 于妙善 ,2017,在需求與供應不確定下自行車共享系統多站點間之供需媒合,碩
    士論文,臺灣大學工業工程學系,臺北市。
    [2] 呂千慈,鍾易詩,馮正民,2018,環境空間與站點數對公共自行車租借量之影響
    分析,碩士論文,國立交通大學運輸與物流管理學系,新竹市。
    [3] 陳信宏,2022,基於階級關係之共享單車的調度策略,碩士論文,中原大學資訊
    工程學系,桃園市。
    [4] 陳惠國,2023,運輸規劃-基礎與進階,桃園市:五南。
    [5] 陳惠國,2024,運輸工程,桃園市:五南。
    [6] Azari, A., Papapetrou, P., Denic, S., Peters, G. (2019). Cellular traffic prediction and
    classification: A comparative evaluation of LSTM and ARIMA. In Discovery Science:
    22nd International Conference, DS 2019, Split, Croatia, October 28–30, 2019,
    Proceedings 22 ,129-144. Springer International Publishing. doi:
    https://doi.org/10.1007/978-3-030-33778-0_11
    [7] Agresti, A. (2015). Foundations of linear and generalized linear models.
    [8] Braun, L. M., Rodriguez, D. A., Cole-Hunter, T., Ambros, A., Donaire-Gonzalez, D.,
    Jerrett, M., Nazelle, A. (2016). Short-term planning and policy interventions to promote
    cycling in urban centers: Findings from a commute mode choice analysis in Barcelona,
    Spain. Transportation Research Part A: Policy and Practice, 89, 164-183.
    [9] Collini, E., Nesi, P., Pantaleo, G. (2021). Deep learning for short-term prediction of
    available bikes on bike-sharing stations. IEEE Access, 9, 124337-124347. doi:
    10.1109/ACCESS.2021.3110794.
    [10] Chung, J., Gulcehre, C., Cho, K., Bengio, Y. (2014). Empirical evaluation of gated
    recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. doi:
    https://doi.org/10.48550/arXiv.1412.3555
    42
    [11] Chen, T., Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings
    of the 22nd acm sigkdd international conference on knowledge discovery and data
    mining , 785-794. doi: https://doi.org/10.1145/2939672.2939785
    [12] Chen, L. T., Hsu, Y. W. (2020). Socio-ecological predictors of frequent bike share trips:
    Do purposes matter?. International Journal of Environmental Research and Public
    Health, 17(20), 7640. Doi: https://www.mdpi.com/1660-4601/17/20/7640
    [13] Feng, Y., Wang, S. (2017). A forecast for bicycle rental demand based on random forests
    and multiple linear regression. In 2017 IEEE/ACIS 16th International Conference on
    Computer and Information Science (ICIS) , 101-105. doi: 10.1109/ICIS.2017.7959977.
    [14] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
    Annals of statistics, 1189-1232. doi: https://www.jstor.org/stable/2699986
    [15] Guidon, S., Becker, H., Axhausen, K. (2019). Avoiding stranded bicycles in free-floating
    bicycle-sharing systems: using survival analysis to derive operational rules for
    rebalancing. 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 1703
    1708. IEEE.
    [16] Guidon, S., Reck, D. J., Axhausen, K. (2020). Expanding a (n)(electric) bicycle-sharing
    system to a new city: Prediction of demand with spatial regression and random forests.
    Journal of Transport Geography, 84, 102692. doi:
    https://doi.org/10.1016/j.jtrangeo.2020.102692
    [17] Gu, X., Tang, X., Chen, T., Liu, X. (2024). Predicting the network shift of large urban
    agglomerations in China using the deep-learning gravity model: A perspective of
    population migration. Cities, 145, 104680. doi:
    https://doi.org/10.1016/j.cities.2023.104680
    [18] Habib, K. N., Mann, J., Mahmoud, M., & Weiss, A. (2014). Synopsis of bicycle demand
    in the City of Toronto: Investigating the effects of perception, consciousness and
    comfortability on the purpose of biking and bike ownership. Transportation research
    43
    part A: policy and practice, 70, 67-80.
    [19] Hu, Z., Huang, K., Zhang, E., Ge, Q. A., Yang, X. (2021). Rebalancing strategy for bike
    sharing systems based on the model of level of detail. Journal of advanced
    transportation, 1-15. doi: https://doi.org/10.1155/2021/3790888
    [20] Heanue, K. E., Pyers, C. E. (1966). A comparative evaluation of trip distribution
    procedures. Highway Research Record, 114, 20-50.
    [21] Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural computation,
    9(8), 1735-1780. doi: 10.1162/neco.1997.9.8.1735.
    [22] Jiang, W. (2022). Bike sharing usage prediction with deep learning: a survey. Neural
    Computing and Applications, 34(18), 15369-15385. doi: https://doi.org/10.1007/s00521
    022-07380-5
    [23] Liu, J., Li, Q., Qu, M., Chen, W., Yang, J., Xiong, H., Fu, Y. (2015). Station site
    optimization in bike sharing systems. In 2015 IEEE International Conference on Data
    Mining , 883-888. doi:10.1109/ICDM.2015.99
    [24] Liang, Y., Ding, F., Huang, G., Zhao, Z. (2023). Deep trip generation with graph neural
    networks for bike sharing system expansion. Transportation Research Part C: Emerging
    Technologies, 154, 104241. doi: https://doi.org/10.1016/j.trc.2023.104241
    [25] Lawson, H. C., Dearinger, J. A. (1967). A comparison of four work trip distribution
    models. Journal of the Highway Division, 93(2), 1-25. doi:
    https://doi.org/10.1061/JHCEA2.0000245
    [26] Lenormand, M., Bassolas, A., Ramasco, J. J. (2016). Systematic comparison of trip
    distribution laws and models. Journal of Transport Geography, 51, 158-169. doi:
    https://doi.org/10.1016/j.jtrangeo.2015.12.008
    [27] Lahoorpoor, B., Faroqi, H., Sadeghi-Niaraki, A., Choi, S. M. (2019). Spatial cluster
    based model for static rebalancing bike sharing problem. Sustainability, 11(11), 3205.
    doi: https://www.mdpi.com/2071-1050/11/11/3205
    44
    [28] Ma, X., Yin, Y., Jin, Y., He, M., Zhu, M. (2022). Short-term prediction of bike-sharing
    demand using multi-source data: a spatial-temporal graph attentional LSTM approach.
    Applied Sciences, 12(3), 1161.
    [29] Mateo-Babiano, I., Bean, R., Corcoran, J., & Pojani, D. (2016). How does our natural
    and built environment affect the use of bicycle sharing?. Transportation research part A:
    policy and practice, 94, 295-307.
    [30] Mateo-Babiano, I., Kumar, S., Mejia, A. (2017). Bicycle sharing in Asia: a stakeholder
    perception and possible futures. Transportation research procedia, 25, 4966-4978. doi:
    https://doi.org/10.1016/j.trpro.2017.05.375
    [31] Midgley, P. (2011). Bicycle-sharing schemes: enhancing sustainable mobility in urban
    areas. United Nations, Department of Economic and Social Affairs, 8, 1-12.
    [32] Nagy, A. M., Simon, V. (2018). Survey on traffic prediction in smart cities. Pervasive
    and Mobile Computing, 50, 148-163. doi: https://doi.org/10.1016/j.pmcj.2018.07.004
    [33] Pan, Y., Zheng, R. C., Zhang, J., Yao, X. (2019). Predicting bike sharing demand using
    recurrent neural networks. Procedia computer science, 147, 562-566. doi:
    https://doi.org/10.1016/j.procs.2019.01.217
    [34] Pourebrahim, N., Sultana, S., Thill, J. C., Mohanty, S. (2018). Enhancing trip distribution
    prediction with twitter data: comparison of neural network and gravity models. In
    Proceedings of the 2nd acm sigspatial international workshop on ai for geographic
    knowledge discovery, 5-8. doi: https://doi.org/10.1145/3281548.3281555
    [35] Pitombo, C. S., de Souza, A. D., Lindner, A. (2017). Comparing decision tree algorithms
    to estimate intercity trip distribution. Transportation Research Part C: Emerging
    Technologies, 77, 16-32. doi: https://doi.org/10.1016/j.trc.2017.01.009
    [36] Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by
    back-propagating errors. nature, 323(6088), 533-536. doi:
    https://www.nature.com/articles/323533a0
    45
    [37] Simini, F., Barlacchi, G., Luca, M., Pappalardo, L. (2021). A deep gravity model for
    mobility flows generation. Nature communications, 12(1), 6576. doi:
    https://doi.org/10.1038/s41467-021-26752-4
    [38] Sohrabi, S., Paleti, R., Balan, L., Cetin, M. (2020). Real-time prediction of public bike
    sharing system demand using generalized extreme value count model. Transportation
    Research Part A: Policy and Practice, 133, 325-336.
    [39] Song, J., Zhang, L., Qin, Z., Ramli, M. A. (2022). Spatiotemporal evolving patterns of
    bike-share mobility networks and their associations with land-use conditions before and
    after the COVID-19 outbreak. Physica A: Statistical Mechanics and its
    Applications, 592, 126819.
    [40] Subramanian, M., Cho, J., Veerappampalayam Easwaramoorthy, S., Murugesan, A., &
    Chinnasamy, R. (2023). Enhancing Sustainable Transportation: AI-Driven Bike Demand
    Forecasting in Smart Cities. Sustainability, 15(18), 13840.
    [41] Sun, Y., Li, Y., Borozan, S., Wang, G., Qiu, J., Strbac, G. (2023). Battery swapping
    dispatch for self-sustained highway energy system based on spatiotemporal deep
    learning traffic flow prediction. IEEE Transactions on Industry Applications, 60(1). doi:
    10.1109/TIA.2023.3321713.
    [42] Sathishkumar, V. E., Park, J., Cho, Y. (2020). Using data mining techniques for bike
    sharing demand prediction in metropolitan city. Computer Communications, 153, 353
    366. doi: https://doi.org/10.1016/j.comcom.2020.02.007
    [43] Sun, J., He, Y., Zhang, J. (2023). A Cluster-Then-Route Framework for Bike Rebalancing
    in Free-Floating Bike-Sharing Systems. Sustainability, 15(22), 15994. doi:
    https://www.mdpi.com/2071-1050/15/22/15994
    [44] Tekouabou, S. C. K. (2021). Intelligent management of bike sharing in smart cities using
    machine learning and Internet of Things. Sustainable Cities and Society, 67, 102702. doi:
    https://doi.org/10.1016/j.scs.2020.102702
    46
    [45] Tillema, F., Van Zuilekom, K. M., Van Maarseveen, M. F. (2006). Comparison of neural
    networks and gravity models in trip distribution. Computer‐Aided Civil and
    Infrastructure Engineering, 21(2), 104-119. doi: https://doi.org/10.1111/j.1467
    8667.2005.00421.x
    [46] Vallez, C. M., Castro, M., Contreras, D. (2021). Challenges and opportunities in dock
    based bike-sharing rebalancing: A systematic review. Sustainability, 13(4), 1829. doi:
    https://doi.org/10.3390/su13041829
    [47] VE, S., Cho, Y. (2024). Season wise bike sharing demand analysis using random forest
    algorithm. Computational Intelligence, 40(1), e12287. doi:
    https://doi.org/10.1111/coin.12287
    [48] Wu, X., Lyu, C., Wang, Z., Liu, Z. (2019). Station-level hourly bike demand prediction
    for dynamic repositioning in bike sharing systems. In Smart transportation systems
    2019, 19-27. doi:https://doi.org/10.1007/978-981-13-8683-1_3
    [49] Xu, J., Huang, E., Chen, C. H., Lee, L. H. (2015). Simulation optimization: A review and
    exploration in the new era of cloud computing and big data. Asia-Pacific Journal of
    Operational Research, 32(3), 1550019. doi:
    https://doi.org/10.1142/S0217595915500190
    [50] Yang, Y., Jia, B., Yan, X. Y., Chen, Y., Song, D., Zhi, D., Gao, Z. (2023). Estimating
    intercity heavy truck mobility flows using the deep gravity framework. Transportation
    Research Part E: Logistics and Transportation Review, 179, 103320. doi:
    https://doi.org/10.1016/j.tre.2023.103320
    [51] Yamak, P. T., Yujian, L., Gadosey, P. K. (2019). A comparison between arima, lstm, and
    gru for time series forecasting. In Proceedings of the 2019 2nd international conference
    on algorithms, computing and artificial intelligence, 49-55. doi:
    https://doi.org/10.1145/3377713.3377722
    [52] Yang, S., Yu, X., Zhou, Y. (2020). Lstm and gru neural network performance comparison
    47
    study: Taking yelp review dataset as an example. In 2020 International workshop on
    electronic communication and artificial intelligence (IWECAI), 98-101. doi:
    10.1109/IWECAI50956.2020.00027.
    [53] Zhang, S. M., Su, X., Jiang, X. H., Chen, M. L., Wu, T. Y. (2019). A Traffic Prediction
    Method of Bicycle-sharing based on Long and Short term Memory Network. J. Netw.
    Intell., 4(2), 17-29.

    QR CODE
    :::