| 研究生: |
葉佳煊 Jia-Hsuan Yeh |
|---|---|
| 論文名稱: |
熱養護混凝土應用於低放射性廢棄物盛裝容器之障壁功能試驗評估 |
| 指導教授: | 黃偉慶 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 234 |
| 中文關鍵詞: | 容器混凝土 、氯離子擴散 、熱養護 、表面電阻率 |
| 外文關鍵詞: | Concrete Canister, Chloride diffusion, Heat curing, Surface resistivity |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低放射性廢棄物處置設施工程障壁由混凝土所組成,不同於一般混凝土結構用途,其服務年限需長達數百年之久。考量未來國內最終處置場之場址可能位於濱海區域,混凝土容器長期處於此環境下,對混凝土所造成之劣化與耐久性的影響顯著。
本研究延續先前研究團隊製作用於低放射性廢棄物處置容器用混凝土桶身及填充材料之配比HIC-C與配比HIC-M及配比C與配比M進行單一方向氯離子入侵濃度試驗,以表面氯離子濃度及擴散係數隨時間長期發展趨勢,進行配比之服務年限推估,且利用信賴區間概念與亂數模擬方法,推估盛裝容器混凝土在服務年限內發生腐蝕破壞的風險。
為提升低放射性廢棄物處置盛裝容器用混凝土之品質,延續先前研究團隊所採用80℃(三天及四天)及本研究新增90℃(兩天及三天)之熱養護方法製作試體,進行抗壓強度、孔隙率、乾縮、壓力下水貫入深度、氮氣吸附及電阻率試驗,並將結果與23℃常溫養護試體加以比較,藉由統計方法針對不同養護方式之主要實驗結果進行單因子變異數分析,整合試驗結果顯示,高溫養治兩種混凝土配比之各項性質顯著優於常溫養治混凝土,且高溫養治試體中,以80℃養護四天為較佳養護方式。
利用非破壞且快速量測混凝土表面電阻方式,針對可能具有瑕疵之混凝土試體進行電阻量測,將試驗結果藉由統計分析,結果顯示使用非破壞性表面電阻檢測作為容器混凝土不同階段驗收檢驗方法應具可行性。
The concrete used for making containers for low-level radioactive wastes is different from typical structural concrete that it is subjected to a prolonged service period.
This study extends the investigations on the mixes of HIC-C, HIC-M and mixes C and M used for highly integrated containers (HIC) by continuing measurements on the surface chloride ion concentration and diffusion coefficient of these mixes, such that the long-term behavior of chloride ingress into the mixes is carefully evaluated.
In order to improve the performance of the concrete mixes, specimens were thermally cured at 80℃ and 90℃ for 2 to 4 days and then tested for compressive strength, porosity, drying shrinkage, water penetration depth, gas adsorption and electrical resistivity. And the results were compared with the 23℃ normal temperature cured test specimens. Based on statistical analysis results, the concrete mixes cured at high temperature are found to show improved quality than those cured at normal temperature. with the 4-day curing at 80℃ having the most improvement.
Using the non-destructive and rapid measurements on concrete surface resistance, it was able to differentiate concrete specimens with crack and/or damage. Statistical analysis results indicate that surface resistance can be used as a means of acceptance measurement for concrete containers.
台灣電力公司:http://www.taipower.com.tw/
行政院原子能委員會:http://www.aec.gov.tw/
經濟部低放射性廢棄物最終處置:http://www.llwfd.org.tw/index.aspx
王茂齡(1987),輸送現象,高立圖書有限公司。
王心荻,「試體參數對混凝土電阻值影響之研究」,碩士論文,國立台灣海洋大學,基隆(2009)。
行政院原子能委員會,低放射性廢棄物(低階核廢料)最終處置的安全管理(2014)。
牟妍樺,「低放處置場混凝土工程障壁受氯離子侵襲之服務年限信賴度研究」,碩士論文,國立中央大學土木工程研究所,中壢(2013)。
李金輝,「黃氏富勒緻密配比設計法應用於活性粉混凝土性質之研究」,碩士論文,國立台灣科技大學,台北(2006)。
吳桂卿,「不同養護溫度條件對提升障壁混凝土品質之成效」,碩士論文,國立中央大學土木工程研究所,中壢(2016)。
莊美玲,「活性粉混凝土應用於低放射性廢棄物最終處置場工程障壁材料之耐久性評估」,博士論文,國立中央大學土木工程研究所,中壢(2014)。
陳昱安,「低放處置場工程障壁受氯離子侵蝕服務年限預估研究」,碩士論文,國立中央大學土木工程研究所,中壢(2012)。
陳品臻,「低放處置場混凝土障壁受氯離子入侵之使用年限推估」,碩士論文,國立中央大學土木工程研究所,中壢(2015)。
陳雅文,「低放射性最終處置場障壁混凝土以熱養護提升品質之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2018)。
彭琦茵,「障壁混凝土受氯離子入侵剖面及使用年限推估之方法比較」,碩士論文,國立中央大學土木工程研究所,中壢(2015)。
廖文佑,「低放射性廢棄物盛裝容器混凝土品質檢測之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2017)。
羅欣蕙,「低放射性廢棄物障壁混凝土受氯離子入侵之劣化及預估研究」,碩士論文,國立中央大學土木工程研究所,中壢(2011)。
AASHTO T259-02 Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration.
AASHTO T260-97 Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials.
AASHTO T358-15 Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration.
Ann, K.Y., Ahn, J. H., and Ryou, J. S. (2009), “The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures.” Construction and Building Materials, Vol. 23, pp. 239- 245.
ASTM C1556-11 Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion.
ASTM C1152-12 Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete1.
ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
Bai, J., Wild, S., and Sabir, B. B. (2003). “Chloride ingress and strength loss in concrete with different PC-PFA-MK binder compositions exposed to synthetic seawater.” Cement and Concrete Research, Vol. 33, pp. 353-362.
Bandelj, B., Saje, D., Šušteršič, J., Lopatič, J., and Saje, F. (2011). “Free Shrinkage of High Performance Steel Fibre Reinforced Concrete.” Journal of Testing and Evaluation, 39(2), 166-176.
BS EN 12390-8 Depth of penetration of water under pressure.
Chalee, W., Jaturapitakkul, C., and Chindaprasirt, P. (2009). “Predicting the chloride penetration of fly ash concrete in seawater.” Marine structures, Vol. 22, No.1, pp. 341-353.
DataFit (URL):http://www.curvefitting.com/.
Frazao, C., Camoes, A., Barros, J., and Goncalves, D.(2015). “Durability of steel fiber reinforced self-compacting concrete.” Construction and Building Materials, Vol. 80, pp. 155-166.
Gettu, R., Gardner D.R., Saldivar H., and Barragfin B.E.(2005). “Study of the distribution :and orientation of fibers in SFRC specimens ”, Materials and Structures, Vol. 38, pp. 31-37.
Gowers, K. R., and Millard, S. G. (1999). “Measurement of concrete resistivity for assessment of corrosion severity of steel using wenner technique” ACI Materials Journal , Vol. 96, No. 5, pp.536-541.
Jussara, T., Ardani, A. (2012). “Surface Resistivity Test Evaluation as an Indicator of the Chloride Permeability of Concrete”, Federal Highway Administration.
Kim, J., McCarter, W. J., Suryanto, B., Nanukuttan, S., Basheer, P. A. M., and Chrisp, T. M. (2016). “Chloride ingress into marine exposed concrete: A comparison of empirical- and physically- based models” Cement and Concrete Composites, Vol.72, pp. 133-145.
Khan, K., and Amin, M. N. (2017) “Influence of fineness of volcanic ash and its blends with quarry dust and slag on compressive strength of mortar under different curing temperatures” Construction and Building Materials, Vol.154, pp. 514-528.
Lee, N. P., and Chisholm, D, H. (2005). “Reactive powder concrete” Study Report SR 146, BRANZ Ltd, Judgeford, New Zealand.
Leng, F., Feng, N., and Lu, X. (2000). “An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace salg concrete.” Cement and Concrete Research, Vol. 30, pp. 989-992.
Life-365 (URL):http://www.life-365.org/.
Life-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides” (2013).
Mangat, P.S., and Molloy, B.T. (1994). “Prediction of long term chloride concentration in concrete.” Material and structures, Vol. 27, pp. 338-346.
Morris, W., Moreno, E.I., and SagiiCs, A.A.(1996). “Practical evaluation of resistivity of concrete in test cylinders using a wenner array probe.” Cement and Concrete Research, Vol. 26, No. 12, pp. 1779-1787.
Nokken, M., Boddy, A., Hooton, R.D., and Thomas, M.D.A. (2006). “Time dependent diffusion in concrete−three laboratory studies.” Cement and concrete research, Vol. 36, No. 1, pp. 200-207.
Pack, S. W., Jung, M. S., Song, H. W.,Kim, S. H., and Ann, K. Y. (2010). “Prediction of time dependent chloride transport in concrete structures exposed to a marine environment” Cement and Concrete Research, Vol. 40, pp. 302-312.
Peng, L., Zhiwu, Y., Zhaohui, L., Ying, C., and Xuaijie, L. (2016). “Predictive convection zone depth of chloride in concrete under chloride environment” Cement and concrete composites, Vol. 72, pp. 257-267.
Polder, R.B. (2001). “Test methods for on site measurement of resistivity of concrete a RILEM TC-154 technical recommendation.” Construction and Building Materials, pp. 125-131.
Ramezanianpour, A.A., Pilvar, A., Mahdikhani, M., and Moodi, F. (2011). “ Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength”, Construction and Building Materials, Vol. 25, pp. 2472–2479.
Safiuddin, Md., and Hearn, N.(2005). “Comparison of ASTM saturation techniques for measuring the permeable porosity of concrete” Cement and Concrete Research, Vol. 35, pp1008-1013.
Sengul, O.(2014). “Use of electrical resistivity as an indicator for durability”, Construction and Building Materials, Pages 434–441.
Sherman, R.M., David, M.B., and Pfeifer, D.W. (1996). “Durability aspects of precast prestressed Concrete-Part 1 and 2.” Journal of PCI, Vol. 41, No. 4, pp. 60-64.
Song, S., Jiang, L.,Jiang, S., Yan,X., and Xu, N. (2018). “The mechanical properties and electrochemical behavior of cement paste containing nano-MgO at different curing temperature” Construction and Building Materials, Vol. 164, pp. 663–671.
Song, H.W., Lee, C.H., and Ann, K.Y. (2008). “Factors influencing chloride transport in concrete structures exposed to marine environments,” Cement and concrete composites, Vol. 30, pp. 113-121.
Stanish, K., Thomas, M. (2003). “The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients.” Cement and concrete research, Vol. 33, pp. 55-62.
Yimou, A., Chengbin, D.,and Faliang. (2008). “Concrete crack measurement by electrical resistivity” Journal of Southeast University, Vol. 38, No.2, pp.289-292.
Young, J.F., Mindess, S., and Darwin, D. (2002). Concrete, Prentice Hall, Inc., Upper Saddle River, New Jersey, U.S.A..
Zanni, H., Cheyrezy, M., Maret, V., Philippot, S., and Nieto, P. (1996). “Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using “Si NMR”.” Cement and concrete research , Vol. 26, pp. 93-100.