跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹佳玲
Chia-Ling Chan
論文名稱: 介觀微粒庫倫液體之流變學
Microrheology of Mesoscopic Dusty Coulomb Liquids
指導教授: 伊林
Lin I
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 92
語文別: 英文
論文頁數: 67
中文關鍵詞: 庫倫液體微粒
外文關鍵詞: Dusty Coulomb Liquids, Mesoscopic
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在奈米科學中,介觀液體在狹縫中的微觀動力行為與其流變反應,
    一直都是個很重要的議題。然而,由於測量尺度的限制,大多數的科學
    家只能透過電腦模擬或者在實驗上,量測其表面力與速度等巨觀特性。
    其微觀結構與運動行為,卻鮮少人能直接測量並探討研究。
    在微粒庫倫系統中,我們將微粒丟入充滿電漿的二維長形空腔中。
    由於電子有較高的遷移率,故空腔與微粒會帶負電,透過庫倫力的交互
    作用,進而形成二維長形庫倫結構。藉由調控背景擾動,並輔以光學顯
    微鏡,我們不僅能透過追蹤粒子的運動軌跡直接觀察到微粒庫倫液體的
    狀態並且能觀測了解其微觀結構排列行為。
    我們利用平行反向的雷射光束施加剪力在介觀庫倫液體的兩側,在
    粒子間的相互影響,邊界效應,背景擾動,與外加剪力的交互作用,我
    們發現其平均速度分布會分隔成兩區: 兩側高速度區夾著中間低速度
    區。這種現象稱做”剪力帶的形成” 。透過一些統計工具的計算分
    析(例如: 速度分布﹑結構變化率﹑以及一些時空關聯函數等等…),我
    們深入探討介觀液體形成剪力帶的起源並加以比較與其他系統(如: 玻
    璃態的物質等...) 的異同特性。


    Abstract
    We investigate experimentally the generic microscopic dynamical
    behavior of a dust Coulomb liquid confined in a narrow mesoscopic
    channel and sheared by two parallel counter laser beams along the
    opposite boundaries, at the low stress limit where the shear induced
    average speed is comparable to the thermal speed. A liquid confined in
    a narrow channel with width down to the molecular scale usually exhibits
    anomalous behavior in structure and motion deviating from the
    bulk liquid, under the e®ect of discreteness, finite boundary, and lager
    thermal fluctuations. It is an interesting and important issue for nanoscience
    and technology. Nevertheless, the rheology studies have been
    mainly limited to the macroscopic force and velocity measurement on
    the confining boundary because of the lack of microscopic measures
    at the small atomic scale, which is insu±cient to construct an obvious
    microscopic picture for the sheared flow in a narrow channel. A dust
    Coulomb liquid formed by micrometer sized dust particles charged
    and suspended in a low pressure weakly ionized discharge background
    is an heuristic system to mimic and understand the generic dynamical
    behaviors at the kinetic level because of the capability of directly
    visualization. In this work, through monitoring the spatio-temporal
    evolution of micro-motion and correlating with the local structure rearrangement,
    we demonstrate the following findings:
    1. The mean velocity profile exhibits shear bands with high mean
    shear rates in the outer region sandwiching a center zone with
    low shear rate.
    2. Stress enhanced avalanche type cooperative topological rearrangement
    associated with the vortex type cooperative hopping involvi
    ing a cluster of particles are observed in the shear band, which
    are responsible for the observed enhanced longitudinal and transverse
    velocity fluctuations and the higher structural relaxation
    rate in the shear bands. It screens the external drive through
    relaxing the local stress and leaves a weakly perturbed center
    zone.
    3. We also point out that the nonlinear threshold type stick-slip
    hopping after accumulation of local stress is the origin for shear
    thinning and shear banding which have also been observed in
    glassy systems under the slow dynamics. Unlike in the glassy
    system, the finite temperature e®ect leads to the absence of a
    finite yield stress.

    Contents 1 Introduction 1 2 Background and Theory 6 2.1 Rheology of Fluids . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Rheology of Newtonian fluids . . . . . . . . . . . . . . 6 2.1.2 Rheology of non-Newtonian fluids . . . . . . . . . . . 7 2.1.3 Glassy rheology . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Liquids in a Mesoscopic Channel . . . . . . . . . . . . . . . . 9 2.2.1 The microscopic picture of the bulk liquid . . . . . . . 9 2.2.2 Characteristics of a confined liquid . . . . . . . . . . . 10 2.3 Dusty Plasma System . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 RF glow discharges and dusty plasma . . . . . . . . . . 11 2.3.2 The quasi-2D strongly coupled dusty plasma liquid . . 13 2.4 Topological Defects and Spatiotemporal Correlation Functions 15 2.4.1 Topological defects . . . . . . . . . . . . . . . . . . . . 15 2.4.2 Spatiotemporal correlation of local bond-orientational order . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Experiment 21 3.1 Experimental Setup and Data Analysis . . . . . . . . . . . . . 21 iii CONTENTS 4 Result and Discussion 26 4.1 Shear-free Coulomb Liquids . . . . . . . . . . . . . . . . . . . 26 4.1.1 The motion of microscopic liquids . . . . . . . . . . . . 27 4.1.2 Boundary e®ect for a confined liquid . . . . . . . . . . 27 4.2 Sheared Dusty Plasma Liquids . . . . . . . . . . . . . . . . . . 32 4.2.1 Nonlinear velocity response and the observation of shear banding . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.2 Histogram of displacement . . . . . . . . . . . . . . . 36 4.3 The Generic Behavior of Shear Banding . . . . . . . . . . . . 37 4.3.1 Local structural rearrangement . . . . . . . . . . . . . 41 4.3.2 Temporal correlation of bond-orientation order . . . . . 42 4.3.3 The microscopic origin of shear banding . . . . . . . . 46 5 Conclusions 50

    [1] e.g. S. Granick, Phys. Today, 52, No,7,26 (1999).
    [2] e.g. J. Gollub, Phys, Today, 56, (1),10 (2003).
    [3] C. L. Rhykerd, Jr., etal , Nature (London) 330, 461 (1987).
    [4] P. A. Thompson, G. S. grest, and M. O. Robbins, Phys. Rev. Lett. 68,
    3448 (1992).
    [5] M. Heuberger, M. Zach, and N. d. Spencer, Science 292, 905 (2001).
    [6] J. Gao, W. D. Luedtke, and U. Landman, Phys. Rev. Lett. 79, 705
    (1997).
    [7] A. L. Demirel and S. Granick, Phys. Rev. Lett. 77, 2261 (1996).
    [8] L. W. Teng, P. S. Tu, and Phys. Rev. Lett. 90, 245004 (2003).
    [9] e.g. T. E. Faber, FluuidDynamicsforPhysicsts (Cambridge University
    Press, Cambridge, 1995).
    [10] A. Kabla and G. Debregeas, Phys. Rev. Lett. 90, 258301 (2003).
    [11] J. B. Salmon, A. C. Colin, and S. Manneville, Phys. Rev. Lett. 90,
    228303 (2003).
    53
    Bibliography
    [12] F. Varnik, L. Bocquet, J.-L. Barrat, and L. Berthier, Phys. Rev. Lett.
    90, 095702 (2003).
    [13] Y. Jiang, etal , Phys. Rev. E. 59, 5819 (1999).
    [14] J. H. Chu and Lin I, Phys. Rev. Lett. 72, 4009 (1994).
    [15] Y. J. Lai and Lin I, Phys. Rev. Lett. 89, 155002 (2002).
    [16] K. J. Strandburg, Bond ¡ OrientationalOrderinCondensedMatterSystems
    (Springer, New York, 1992).
    [17] W. Y. Woon and Lin I, Phys. Rev. Lett. 92, 065003 (2004).
    [18] Lin I, W. T. Juan, and C. H. Clnang, Science 272, 1626 (1996)
    [19] P. Tapadia and S. Q. Wang, Phys. Rev. Lett. 91, 198301 (2003).
    [20] G. Debregeas, H. Tabuteau and J.-M. di Meglio, Phys. Rev. Lett. 87,
    178305 (2001).
    [21] Y. J. Lai, Ph. D. thesis, National Central University, Republic of China,
    (2002).

    QR CODE
    :::