| 研究生: |
邱紹靂 Shao-Li Chiu |
|---|---|
| 論文名稱: |
顆粒於振動床內熱傳行為之研究 |
| 指導教授: |
蕭述三
Shu-San Hsiau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 顆粒 、振動床 、熱傳 、逆運算 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要以實驗的方式探討顆粒體受到垂直振動時的熱傳行為。其分析對象包括顆粒床體的溫度分佈、顆粒的熱擴散係數、及顆粒體自我擴散運動。研究主要定性探討振動顆粒體在不同的振動條件下的熱傳現象;為了量化熱傳現象,進一步以逆運算法定量分析振動床之振動條件與熱擴散係數間的關係;另外因為顆粒自我擴散運動會增強顆粒熱傳,為證明兩者間的關係,本論文也將以影像處理及粒子追蹤的方式,計算出顆粒自我擴散係數,再將自我擴散係數與熱擴散係數進行比較,實驗結果顯示,熱擴散係數與自我擴散運動呈現線性正相關。
This study investigates the effect of vertical vibration on the granular heat transfer phenomena. In order to qualify the thermal phenomena under different vibration conditions, the inverse numerical method is applied for estimating the effective thermal diffusivity of particle. Because the granular self-diffusivity can enhance the granular thermal performance, this study use Particle tracking velocimetry (PTV) to calculate the granular velocity and granular self-diffusivity. Then we compare the effective thermal diffusivity and granular self-diffusivity. The experimental results show that the effective thermal diffusivity increased with the increased granular self-diffusivity, and in a linear relationship.
[1]Faraday, M., 1831, “On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces,” Philosophical Transactions of the Royal Society of London, Vol. 121, pp. 299-340.
[2] Evesque, P., and Rajchenbach, J., 1989, “Instability in a sand heap,” Physical review letters, Vol. 62, pp. 44-46.
[3] Evesque, P., Szmatula, E., and Denis, J. P., 1990. “Surface fluidization of a sand pile,” EPL, Vol. 12, pp. 623-627.
[4] Wassgren, C. R., Brennen, C. E., and Hunt, M. L., 1995. “Vertical vibration of a deep bed of granular material in a container, ” Journal of applied mechanics, Vol.63, pp. 712-719.
[5] Hsiau, S. S. and Pan, S. J., 1998, “Motion state transitions in a vibrated granular bed,” Powder Technology, Vol. 96, pp.219-226.
[6] Faraday, M., 1831, “On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces,” Philosophical Transactions of the Royal Society of London, Vol. 121, pp. 299-340.
[7] Duran, J., Mazozi, T., Clement, E. and Rajchenbach, J., 1994, “Size segregation in a two-dimensional sandpile: Convection and arching effects,” Physical Review E, Vol. 50, pp. 5138–5141.
[8] Knight, J. B., Jaeger, H. M. and Nagel, S. R., 1993, “Vibration-induced size separation in granular media: The convection connection,” Physical Review Letters, Vol. 92, pp.3728-3731.
[9] Hsiau, S. S. and Chen, C. H., 2000, “Granular convection cells in a vertical shaker,” Powder Technology, Vol. 111, pp. 210-217.
[10] Yang, S. C. and Hsiau, S. S., 2000, “Simulation study of the convection cells in a vibrated granular bed,” Chemical Engineering Science, Vol. 55, pp.3627-3637.
[11] Tai, C. H. and Hsiau, S. S., 2004, “Dynamic behaviors of powders in a vibrating bed,” Powder Technology, Vol. 139, pp. 221-232.
[12] Wassgren, C. R., 1997. “Vibration of granular materials” Ph.D. Thesis, California Institute of Technology, California, USA.
[13] Knight, J. B., 1997, “External boundaries and internal shear bands in granular convection,”Physical Review E, Vol. 55, pp. 6016-6023.
[14] Rosato, A., Strandburg, K. J., Prinz, F. and Swendsen, R. H., 1987, “Why the Brazil nuts are on top: Size segregation of particulate matter by shaking,” Physical Review Letters, Vol. 58, pp. 1038-1040.
[15] Rodriguez-Linan, G. M. and Nahmad-Molinari, Y., 2006, “Granular convection driven by shearing inertial forces,” Physical Review E, Vol. 73, 011302.
[16]Lacey, P. M. C., “Development in the theory of particulate mixing,” J. Appl. Chem. Vol. 15, pp.257-268.
[17]Gyenis, J., 1999, “Assessment of mixing mechanism on the basis of concentration pattern,” Chem. Eng. Process, Vol. 38, pp. 665-674.
[18] Lu, L. S. and Hsiau, S. S., 2005, “Mixing in vibrated granular beds with the effect of electrostatic ford,” Powder Technology, Vol. 160, pp. 170-179.
[19] Lu, L. S., and Hsiau, S. S., 2008, “Mixing in a vibrated granular bed: Diffusive and convective effects,” Powder Technology, Vol.184, pp. 31-43.
[20] Cooke, W., Warr, S., Huntley, J. M. and Ball, R. C., 1996, “Particle size segregation in a two-dimensional bed undergoing vertical vibration,” Physical Review E, Vol. 53, pp.2812-2822.
[21] Hsiau, S. S. and Yu, H. Y., 1997, “Segregation phenomena in a shaker,” Powder Technology, Vol. 93, pp.83-88.
[22] Fan, L. S., and Zhu, C., 2005, Principles of gas-solid flows. Cambridge University Press.
[23] Nguyen, V. D., Cogné, C., Guessasma, M., Bellenger, E., and Fortin, J., 2009, “Discrete modeling of granular flow with thermal transfer: application to the discharge of silos,” Applied thermal engineering, Vol. 29, pp.1846-1853.
[24] Merckx, B., Dudoignon, P., Garnier, J. P., and Marchand, D., 2012, “Simplified Transient Hot-Wire Method for Effective Thermal Conductivity Measurement in Geo Materials: Microstructure and Saturation Effect,” Advances in Civil Engineering, Vol.2012.
[25] Tavman, I. H., 1996, “Effective thermal conductivity of granular porous materials,” International Communications in Heat and Mass Transfer, Vol.23, pp.169-176.
[26] Natarajan, V. V. R., and Hunt, M. L., 1997, “Heat transfer in vertical granular flows,” EXPERIMENTAL HEAT TRANSFER An International Journal, Vol.10, pp.89-107.
[27] Hsiau, S. S., and Hunt, M. L. 1993, “Kinetic theory analysis of flow-induced particle diffusion and thermal conduction in granular material flows,” Journal of heat transfer, Vol.115, pp.541-548.
[28] Shi, D., Vargas, W. L., and McCarthy, J. J., 2008, “Heat transfer in rotary kilns with interstitial gases,” Chemical Engineering Science, Vol.63, pp.4506-4516.
[29] Rahman, S. A., and Mujumdar, A. 2008, “Combined radiant and conductive vacuum drying in a vibrated bed,” International Journal of Food Engineering, Vol.4
[30] Schluender, E. U. 1981, “Heat transfer between packed, agitated and fluidized beds and submerged surfaces,” Chemical Engineering Communications, Vol,9, pp.273-302.
[31] Bukareva, M.F., Chlenov, V.A., and Mikhailov, N.V., 1971, “Investigation of heat transfer between heating surfaces and a vibro-fluidized bed,” International Chemical Engineering , Vol.1, pp.19-21.
[32] Thomas, B., Mason, M. O., Sprung, R., Liu, Y. A., and Squires, A. M., 1998, “Heat transfer in shallow vibrated beds,” Powder technology, Vol.99, pp.293-301.
[33] Siebert, A. W., Highgate, D., and Newborough, M., 1999, “Heat transfer characteristics of mechanically-stimulated particle beds,” Applied thermal engineering, Vol.19, pp.37-49.
[34] Wunschmann, J., Schluender, E. U., 1975, “Heat transfer from heated plates to stagnant and agitated beds of spherical shaped granules under normal pressure and vacuum,” Proceedings of the 5th Heat Transfer Conference(Tokyo), Vol. 5, pp. 49-53.
[35] Siebert, A., Newborough, M., & Highgate, D., 2002, “Heat transfer in mechanically-fluidized particle beds,” Chemical Engineering Research and Design, Vol.80, pp.332-334.
[36] Highgate, D. J., Probert, S. D., Ziane, C., & Pedersen, J. K., 1993, “Heat transfers through mechanically-stimulated particle beds,” Applied energy, Vol.46, pp.349-366.
[37]Shumakov, N. V., 1957, “A method for the experimental study of the process of heating a solid body,” Soviet Physics-Technical Physics, Vol.2, pp.771-781.
[38] Stolz, G., 1960, “Numerical solutions to an inverse problem of heat conduction for simple shapes,” Journal of heat transfer, Vol.82, pp.20-25.
[39] Beck, J. V., 1970, “Nonlinear estimation applied to the nonlinear inverse heat conduction problem,” International Journal of heat and mass transfer, Vol.13, pp.703-716.
[40] Beck, J. V., Litkouhi, B., & Clair Jr, C. S., 1982, “Efficient sequential solution of the nonlinear inverse heat conduction problem,” Numerical Heat Transfer, Part A Applications, Vol.5, pp.275-286.
[41] Alifanov, O. M., & Mikhailov, V. V., 1978, “Solution of the nonlinear inverse thermal conductivity problem by the iteration method,” Journal of Engineering Physics, Vol.35, pp.1501-1506.
[42] Mikhailov, V. V., 1983, “Question of the convergence of iteration methods of solving the inverse heat-conduction problem,” Journal of Engineering Physics and Thermophysics, Vol.45, pp.1263-1266.
[43] Jarny, Y., Ozisik, M. N., & Bardon, J. P., 1991, “A general optimization method using adjoint equation for solving multidimensional inverse heat conduction,” International journal of heat and mass transfer, Vol.34, pp.2911-2919.
[44]Huang, Cheng-Hung, and Bor-Herng Chao., 1997, “An inverse geometry problem in identifying irregular boundary configurations,” International Journal of Heat and Mass Transfer, Vol.40, pp.2045-2053.
[45] Huang, C. H., Ju, T. M., & Tseng, A. A., 1995, “The estimation of surface thermal behavior of the working roll in hot rolling process”, International journal of heat and mass transfer, 38(6), 1019-1031.
[46]Cui, Miao, Xiaowei Gao, and Jinbo Zhang., 2012, “A new approach for the estimation of temperature-dependent thermal properties by solving transient inverse heat conduction problems,” International Journal of Thermal Sciences , Vol.58, pp.113-119.
[47]Chen, Han-Taw, Shen-Yih Lin, and Lih-Chuan Fang., 2001, “Estimation of surface temperature in two-dimensional inverse heat conduction problems,”International Journal of Heat and Mass Transfer Vol.44, pp.1455-1463.
[48] Hunt, M. L., 1997 “Discrete element simulations for granular material flows: effective thermal conductivity and self-diffusivity,” International journal of heat and mass transfer , Vol.40, pp.3059-3068.
[50] Chen, X., & Louge, M., 2008, “Heat transfer enhancement in dense suspensions of agitated solids. Part I: Theory,” International Journal of Heat and Mass Transfer, Vol.51, pp.5108-5118.