跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭智仁
Jhih-Ren Jheng
論文名稱: 預鑄施工梁與版間冷縫對T形斷面梁耐震行為之影響
The Influence of the Construction Joint between Precast Beam and Cast-in-Place Slab on the Seismic Behavior of T-Beams
指導教授: 洪崇展
Chung-Chan Hung
王勇智
Yung-Chih Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 210
中文關鍵詞: T形斷面梁耐震行為交接面剪應力預鑄施工施工冷縫
外文關鍵詞: T-Beams, Seismic Behavior, Precast, Construction Joint, Interface Shear Stress
相關次數: 點閱:25下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要是針對有翼版存在的懸臂梁進行受力行為分析,就有無施工冷縫存在與剪力跨度不同進行討論。一般冷縫交接面剪應力檢核之經驗公式是由單向荷載實驗得來,本文亦探討現有規範之經驗公式是否也適用於反覆荷載之地震受力情形。
    由實驗結果得知,短跨度T形梁(a/d=2.44)存在有澆置冷縫時,比一體澆置試體更容易發生交接面滑移。由於有冷縫存在之試體交接面滑移顯著,負彎矩時更會牽動版筋,使其受拉範圍較大,因此其有效版寬的貢獻為一體澆置試體的1.4倍。另外,就長跨度(a/d=5.46)與短跨度(a/d=2.44)T形梁作比較,發現當試體剪力跨度越長時,抵抗交接面滑移的面積就越大,試體就更不容易發生交接面滑移。由短跨度T形梁(a/d=2.44)交接面剪應力分析結果得知,當試體交接面滑移達0.5mm時,交接面剪應力與規範和經驗公式檢核交接面剪應力的上限值(0.2f''c)相當接近,故0.2f''c應可作為可能產生滑移介面之交接面剪應力上限值。


    The purpose of this study is to observe the seismic behavior of T-shaped cantilever beams. The study investigates the effect of construction joint and shear span, and verifies the current design equations obtained from monotonic loading experience for evaluating interface shear stress is suitable for that under seismic behavior.
    The test results indicate that the T-shaped short beam (a/d=2.44) with construction joint slipped more obviously at the interface than the beam without construction joint. According to test results, the effective width of T-beam flange with construction joint is 1.4 time wider than the beam without construction joint .
    From the comparison between slender beams (a/d=5.46) and short beams (a/d=2.44) it was found that slender beams had less slip effect than short beams. This is because the area of shear resistance at interface for slender beams is larger than short ones.
    The analytical results of horizontal shear stress obtained from T-shaped short beams (a/d=2.44) also show the horizontal shear stress is closer the upper limit of 0.2f''c specified by current design standards. This limit was concluded form the test result when the interfacial slip movement of 0.5mm was attained. Therefore, the upper shear stress limit of 0.2f''c is verified as design standards specified.

    第一章 緒論.............................................. 1 1.1 研究動機...........................................1 1.2 研究目的與方法.....................................1 第二章 文獻回顧...........................................3 2.1規範 ACI 318-08剪力摩擦設計法.......................3 2.2規範 CAN/CSA-A23.3-04 交接面剪力傳遞................5 2.3新舊混凝土交接面剪力相關實驗........................7 2.4新舊混凝土交接面表面處理...........................13 2.5新舊混凝土交接面剪力實際破壞案例...................14 2.6規範 ACI 318-08對截斷長度之規定....................15 第三章 實驗規劃與步驟....................................17 3.1試體規劃...........................................17 3.2材料試驗...........................................17 3.2.1鋼筋抗拉試驗..................................18 3.2.2混凝土抗壓試驗................................18 3.3試體設計...........................................18 3.3.1 T1aj二次澆鑄長梁.............................19 3.3.2 T1b 單一澆鑄短梁.............................19 3.3.3 T1bj二次澆鑄短梁.............................19 3.4試體製作...........................................20 3.4.1鋼筋籠製作....................................20 3.4.2模板製作......................................21 3.4.2.1單一澆鑄試體..............................21 3.4.2.2二次澆鑄試體..............................22 3.4.3試體澆置......................................22 3.4.3.1單一澆鑄試體..............................22 3.4.3.2二次澆鑄試體..............................23 3.4.4試體拆模與養護................................23 3.5實驗設備...........................................24 3.5.1施力系統......................................24 3.5.1.1柱頭預力..................................24 3.5.1.2反力鋼梁..................................25 3.5.1.3千斤頂....................................26 3.5.2量測系統......................................26 3.6實驗方法與步驟.....................................27 3.7實驗數據處理.......................................28 3.7.1理論標稱載重..................................28 3.7.2柱端塊體旋轉角造成之位移∆cb...................28 3.7.3梁固定端旋轉角造成之位移∆bf...................29 3.7.4梁腹側面矩形應力塊量測到之位移與剪力變形......30 3.7.5理論降伏位移∆by...............................31 3.7.6層間變位角DR與位移韌性比μ∆...................32 3.7.7交接面剪應力計算..............................33 3.7.8斷面分析之理論初始勁度........................33 第四章 實驗結果..........................................35 4.1 T形短梁(a/d=2.44).................................35 4.1.1T1b單一澆鑄短梁...............................36 4.1.2 T1bj二次澆鑄短梁.............................42 4.2 T形二次澆鑄長梁T1aj(a/d=5.46).....................49 第五章 討論..............................................56 5.1交接面剪應力實驗結果與各家學說預測值作比較.........56 5.1.1 T1b單一澆鑄短梁..............................56 5.1.2 T1bj二次澆鑄短梁.............................58 5.1.3 T1aj二次澆鑄長梁.............................60 5.2 T形短梁有無冷縫對交接面滑移之影響.................61 5.3跨度不同對冷縫之影響...............................65 第六章 結論與建議........................................66 6.1結論...............................................66 6.2建議...............................................68 參考文獻.................................................71 附錄A各試體標稱強度評估計算.............................167 附錄B New RC交接面剪應力檢核探討........................174 附錄C 混凝土冷縫介面剪應力檢核步驟......................178

    [1] ACI Committee 318, Building Code Requirements for Structural Concrete , ACI 318-08 & Commentary, American Concrete Institute, 2008.
    [2] CSA Committee A23.3, Design of Concrete Structures for Building, Canadian Standards Association, Canada, 2004.
    [3] J. C. Saemann, and G. W. Washa, “Horizontal Shear Connections between Precast Beams and Cast-in-Place Slabs,” ACI Journal, Vol.61, No. 69, November, 1964, pp. 1383-1410.
    [4] J. A. Hofbeck, I. O. Ibrahim, and A. H. Mattock, “Shear Transfer in Reinforced Concrete,” ACI Journal, Vol.66, No.13, February, 1969, pp. 119-128.
    [5] R. Park, and T. Paulay, Reinforced Concrete Structures, John Wiley and Sons, 1975, pp. 319-332.
    [6] H. W. Chung, and T. Y. Chung, “Prestressed Concrete Composite Beams under Repeated Loading,” ACI Journal, Vol.73, No. 24, May, 1976, pp. 291-295.
    [7] A. Van Den Beukel, “Composite Beams,” University of Canterbury Library, HERON, Vol.23, No.2, September, 1979.
    [8] R. A. Bass, R. L. Carrasquillo, and J. O. Jirsa, “Shear Transfer across New and Existing Concrete Interfaces,” ACI Structural Journal, Vol.86, No. 4, July-August, 1989, pp. 383-393.
    [9] R. E. Loov D. Phil., and A. K. Patnaik, “Horizontal Shear Strength of Composite Concrete Beams with a Rough Interface,” PCl Journal, Vol.39, No.1, January-February, 1994, pp. 48-68.
    [10] L. F. Kahn, and A. D. Mitchell, “Shear Friction Tests with High-Strength Concrete,” ACI Structural Journal, Vol.99, No. S11, January-February, 2002, pp.98-103.
    [11] L. F. Kahn, and A. Slapkus, “Interface Shear in High Strength Composite T-Beams,” PCl Journal, Vol. 49, No. 4, July-August, 2004, pp. 102-110.
    [12] A. Momayez, A. A. Ramezanianpour, H. Rajaie, and M. R. Ehsani, “Bi-Surface Shear Test for Evaluating Bond between Existing and New Concrete,” ACI Structural Journal, Vol.101, No. M11, March-April, 2004, pp.99-106.
    [13] E. N.B.S. Jùlio, F. A.B. Branco, and V. D. Silva,
    “Concrete-to-Concrete Bond Strength. Influence of The Roughness of The Substrate Surface,” Construction and Building Materials 18, April, 2004, pp. 675–681.
    [14] E. N.B.S. Jùlio, F. A.B. Branco, V. D. Silva, and J. F. Lourenço, “Influence of Added Concrete Compressive Strength on Adhesion to an Existing Concrete Substrate,” Building and Environment 41, May- June, 2005, pp. 1934-1939.
    [15] K. K. Sasaki, T.Paret, J. C. Araiza, and P. Hals, “Failure of Concrete T-Beam and Box-Girder Highway Bridges Subjected to Cyclic Loading form Traffic,” Engineering Structures 32, January, 2010, pp. 1838-1845.
    [16] T. Paulay, and M. J. N. Priestley, Seismic Design of Reinforced Concrete and Masonry Building, John Wiley and Sons, 1992, 744 pp.

    QR CODE
    :::