跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張勝豪
Sheng-Hao Chang
論文名稱: 結合目標物資訊隱藏之雙攝影機追蹤系統
A Dual-Camera Tracking System with Object Information Hiding
指導教授: 蘇柏齊
Po-Chyi Su
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 62
中文關鍵詞: 固定式攝影機臉部偵測資訊隱藏PTZ 攝影機
外文關鍵詞: Information Hiding, MPEG-4, Face Detection, Static camera, PTZ camera
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出結合固定式攝影機,與可左右轉動(Pan)、上下傾斜(Tilt)與縮放(Zoom)的PTZ攝影機之視訊監控機制。經由分析固定式攝影機所拍攝之畫面,偵測畫面中移動物體並加以追蹤,再控制PTZ攝影機取得目標物較高解析度的影像,並將此細節影像經由資訊隱藏技術隱藏至固定式攝影機所記錄之影片中。本論文主要分為三個部分:第一部分為移動目標偵測,我們首先建立固定式攝影機畫面的背景資訊,以此找出可能的移動物體,並持續追蹤每個移動物體。第二部分為PTZ攝影機控制模組,將固定式攝影機取得之目標資訊轉換成對應參數以自動控制PTZ攝影機,並利用人臉偵測技術擷取目標的細部影像。第三部分為資訊隱藏,將記錄下來的細部影像以及與此目標相關的標籤嵌入至影片中,事後若要查詢資料時,即可利用此標籤取得特定目標相對應的細部影像。實驗結果顯示此系統能有效控制PTZ攝影機去追蹤特定目標,並取得足夠解析度之目標物影像。利用資訊隱藏技術,除了擁有一種新穎的影像查詢機制外,還能夠減少所需儲存的檔案數目,甚至減少檔案儲存所需空間。


    In this thesis, we propose a framework consisting of two cameras. One static camera is used to detect and track the objects, and one Pan-Tilt-Zoom (PTZ) camera is used to control/collect high-resolution images. In addition, the information hiding technique is exploited to simplify the querying process of examining high resolution images corresponding to objects appearing in videos. The proposed scheme is composed of three main components. The first part is a moving object detection model, in which the moving objects will be collected from the static camera and be tracked continuously. The second part utilizes the position and size information derived in the part one to control the PTZ camera. The face detection module is adopted here to recognize and preserve the region of interesting (ROI) images with suitable resolution from the PTZ camera. The third part is an information hiding scheme. Those ROI images acquired from the PTZ camera and its related labels are embedded into the corresponding video frames. The authorized user can query these ROI images from the video. Experimental results demonstrate that the proposed scheme can detect moving objects, track them simultaneously, and capture the high resolution ROI images at about 25 fps (Frame per Second). The information hiding technique offers not only a simplified querying method but also reduces the number of files that need to be stored.

    1 Introduction 1  1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  1.2 Contributions of the Research . . . . . . . . . . . . . . . . . . . . . . . . . 2  1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Previous Work 7  2.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  2.2 Camera Tracking Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 The Proposed Scheme 11  3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  3.2 View Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  3.3 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18   3.3.1 Background model . . . . . . . . . . . . . . . . . . . . . . . . . . . 20   3.3.2 Blob tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  3.4 PTZ Control Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  3.5 Face Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  3.6 Face Image Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  3.7 Information Hiding in MPEG-4 . . . . . . . . . . . . . . . . . . . . . . . . 31   3.7.1 Overview of the information hiding technique . . . . . . . . . . . . 35   3.7.2 Embedding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 36   3.7.3 Extracting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 Experimental Results 40  4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  4.2 Object Detection and Tracking Results . . . . . . . . . . . . . . . . . . . . 42  4.3 PTZ Camera Tracking Results . . . . . . . . . . . . . . . . . . . . . . . . . 44  4.4 Information Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Conclusion and Future Work 48  5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Reference 50

    [1] P. KaewTraKulPong and R. Bowden, "An improved background mixture model for real-time tracking with shadow detection," Proc. 2nd European Workshop on Advanced Video Based Surveillance Systems, pp. 149-158, 2001.
    [2] Z. Zivkovic, "Improved adaptive Gaussian mixture model for background subtraction," International Conference on Pattern Recognition, vol. 2, pp. 28-31, 2004.
    [3] Z. Zivkovic and F. Heijden, "Efficient adaptive density estimation per image pixel for the task of background subtraction," Pattern Recognition Letters, vol. 27, no. 7, pp. 773-780, May 2006.
    [4] K. Xue, et al., "Ptz camera-based adaptive panoramic and multi-layered background model," International Conference on Image Processing, pp. 2949-2952, 2011.
    [5] J. Kim, G. Ye, and D. Kim, "Moving object detection under free-moving camera," International Conference on Image Processing, pp.4669-4672, 2010.
    [6] J. Suhr, et al., "Background compensation for pan-tilt-zoom cameras using 1-D feature matching and outlier rejection," IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 3, pp. 371-377, 2011.
    [7] T. Dinh, N. Vo, and G. Medioni, "High resolution face sequences from a PTZ network camera," International Conference on Automatic Face and Gesture Recognition and Workshops, pp. 531-538, 2011.
    [8] Varcheie, P.D.Z., Bilodeau, and G.-A., "Adaptive fuzzy particle filter tracker for a PTZ camera in an IP surveillance system," IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 2, 2011.
    [9] C.-H. Chen, et al., "Heterogeneous fusion of omnidirectional and PTZ cameras for multiple object tracking," IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 8, 2008.
    [10] Y. Yao, B. Abidi, and M. Abidi, "Fusion of omnidirectional and PTZ cameras for accurate cooperative tracking," IEEE International Conference on Video and Signal Based Surveillance, pp. 46-51, 2006.
    [11] G. Scotti, et al., "Dual camera intelligent sensor for high definition 360 degrees surveillance," IEE Proceedings - Vision, Image and Signal Processing, pp. 250-257, 2005.
    [12] T. Funahasahi, et al., "Hierarchical face tracking by using PTZ camera," Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 427-432, 2004.
    [13] Y. Lu and S. Payandeh, "Cooperative hybrid multi-camera tracking for people surveillance," Canadian Journal of Electrical and Computer Engineering, vol. 33, no. 3, pp. 145-152, 2008.
    [14] P. Viola and M. Jones, "Robust real-time object detection," International workshop on statistical and computational theories of vision, 2001.
    [15] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511-518, 2001.
    [16] R. Lienhart and J. Maydt, "An extended set of Haar-like features for rapid object detection," Proceedings of the 2002 International Conference on Image Processing, vol. 1, pp. 900-903, 2002.
    [17] J. Canny, "A computational approach to edge detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, 1986.
    [18] A. Westfeld, "F5: A steganographic algorithm high capacity despite better steganalysis," 4th International Information Hiding Workshop, vol. 2137, pp. 289-302, 2001.

    QR CODE
    :::