| 研究生: |
蔡懿婷 Yi-ting Tsai |
|---|---|
| 論文名稱: |
高效能雙眼立體視覺晶片設計 Design and Implementation of High-Performance Stereo Vision ASIC |
| 指導教授: |
陳慶瀚
Pierre Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 立體視覺 |
| 外文關鍵詞: | stereo vision |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以立體視覺為基礎的工業檢測或是機器視覺技術需要一連串高複雜度的影像處理流程,因此以軟體實現立體視覺通常需要高效能的處理器以應付複雜的演算法計算。而相對於軟體,硬體資源受限的嵌入式系統則受到成本與技術的限制,使得立體視覺於嵌入式系統開發難以實現。本研究藉由MIAT嵌入式硬體設計方法論提出一個立體視覺嵌入式硬體架構,我們先計算比對成本,然後利用樹狀結構進行視差計算,接著得到深度影像後再進行本研究所提出的視差平滑化演算法,可大幅減少物件深度因為光線與陰影造成得錯誤率,實驗結果顯示能夠有效提升偵測物件深度的準確率,減低光線與陰影的影響,在動態影像中使系統偵測的物件深度能夠穩定,不受短暫光源變化影響而變動。最後則整合成立體視覺晶片,應用在各種嵌入式系統。
Industrial inspection system or machine vision system are based on stereo vision technology, those systems requires a lot of highly complex image processing to implement their algorithms. Therefore, implementing stereo vision system with software usually needs high-efficiency processor to cope with calculating complex algorithms. And with respect to the software, embedded systems are subject to restrictions of cost and technology due to restriction on hardware resources. For this reasons, making the development of stereo vision in embedded systems is difficult to achieve. In this paper, we proposed a stereo vision embedded hardware architecture using MIAT embedded hardware design methodology. We first calculate the matching cost, and then use the minimum spanning tree algorithm to calculate disparity. After getting the depth of the image, we do disparity smoothing to significantly reduce the error rate of the object depth, which is caused by the light and shadow. The experimental results show that our system can effectively improve the accuracy of detection of the object depth, and reduce the impact of light and shadow. Our system detects moving objects’ depth in image can be stable, and won’t be affects by short-term changes of light. At last, we integrate all algorithms into a stereo vision chip, and applied to various embedded systems.
[1] H. Zhang, C. Reardon, L.E. Parker, " Real-Time Multiple Human Perception With Color-Depth Cameras on a Mobile Robot ", IEEE Transactions on Cybernetics, Volume:43 ,Issue: 5 ,pp. 1429-1441 ,2013
[2] C. Chen, Y.F. Zheng, " Passive and active stereo vision for smooth surface detection of deformed plates ", IEEE Transactions on Industrial Electronics, Volume: 42, Issue: 3, pp. 300-306, 1995
[3] M. Bertozzi, A. Broggi, " GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection ", IEEE Transactions on Image Processing, Vol.7, Issue: 1, pp. 62-81, 1998
[4] M. Bertozzi, A. Broggi, A. Fascioli1, S. Nichele, " Stereo Vision-based Vehicle Detection ", IV 2000, Proceedings of the IEEE, Intelligent Vehicles Symposium, pp. 39-44, 2000
[5] J. Zhu, L. Yuan, Y.F. Zheng, R.L. Ewing, " Stereo Visual Tracking Within Structured Environments for Measuring Vehicle Speed ", IEEE Transactions on Circuits and Systems for Video Technology, Volume:22, Issue: 10, pp. 1471-1484, 2012
[6] S. Yang, D. Xu, M. Tan, J. Yu, "Mixed Visual Control Method for Robots with Self-Calibrated Stereo Rig", IEEE Transactions on Instrumentation and Measurement, Volume: 59, Issue: 2, p.470-479, 2010
[7] W. Jia, W. Yi, J. Saniie, E. Oruklu, " 3D image reconstruction and human body tracking using stereo vision and Kinect technology ", IEEE International Conference on Electro/Information Technology (EIT), pp. 1-4, 2012
[8] N. Kaempchen, U. Franke, R. Ott, " Stereo vision based pose estimation of parking lots using 3D vehicle models ", Intelligent Vehicle Symposium, IEEE, vol.2, pp. 459-464, 2002
[9] K. Yokoyama, H. Handa, T. Isozumi, Y. Fukase, K. Kaneko, F. Kanehiro, Y. Kawai, F. Tomita, H. Hirukawa, "Cooperative works by a human and a humanoid robot", Proceedings. ICRA '03, IEEE International Conference on Robotics and Automation, pp. 2985-2991, 2003
[10] M.B. Holte, C. Tran, M.M. Trivedi, T.B. Moeslund, "Human Pose Estimation and Activity Recognition From Multi-View Videos: Comparative Explorations of Recent Developments ", IEEE Journal of Selected Topics in Signal Processing, Volume: 6, Issue: 5, pp. 538-552, 2012
[11] M. Van den Bergh, D. Carton, R. de Nijs, N. Mitsou, C. Landsiedel, K. Kuehnlenz, D. Wollherr, L. Van Gool, M. Buss, "Real-time 3D hand gesture interaction with a robot for understanding directions from humans", RO-MAN, 2011 IEEE, pp. 357-362, 2011
[12] B. Kress, J. Lee, "Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview", Proc. SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV, p.13, 2013
[13] D. Scharstein, R. Szeliski, "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms", International Journal of Computer Vision 47 (1 / 2 /3), Vol. 47, Issue 1-3, pp. 7-42, 2002
[14] H. Hirschmuller, " Accurate and efficient stereo processing by semi-global matching and mutual information", CVPR 2005, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol.2, pp. 807-714, 2005
[15] J. Kowalczuk, E.T. Psota, L.C. Perez, "Real-Time Stereo Matching on CUDA Using an Iterative Refinement Method for Adaptive Support-Weight Correspondences", IEEE Transactions on Circuits and Systems for Video Technology, Volume: 23, Issue: 1, pp. 94-104, 2013
[16] M. Bertozzi, A. Broggi, C. Caraffi, M. Del Rose, M. Felisa, G. Vezzoni, "Pedestrian detection by means of far-infrared stereo vision", Computer Vision and Image Understanding, vol.106, Issue 2-3, pp. 194-204, 2007
[17] Q. Yang, "A Non-Local Cost Aggregation Method for Stereo Matching", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16-21, 2012
[18] C.H. Chen, C.M. Kuo, C.Y. Chen, J.H. Dai, “The design and synthesis using hierarchical robotic discrete-event modeling”, Journal of Vibration and Control, vol.19, no.11, pp.1603–1613, 2013
[19] R.P. Wildes, "Direct recovery of three-dimensional scene geometry from binocular stereo disparity", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume: 13, Issue: 8, pp. 761-774, 1991
[20] T.P. Pachidis, J.N. Lygouras, "Pseudostereo-Vision System: A Monocular Stereo-Vision System as a Sensor for Real-Time Robot Applications", IEEE Transactions on Instrumentation and Measurement, Volume: 56, Issue: 6, pp. 2547-2560, 2007
[21] L.D. Stefanoa, M. Marchionnia, S. Mattocciaa, "A fast area-based stereo matching algorithm", Image and Vision Computing, Proceedings from the 15th International Conference on Vision Interface, Vol. 22, Issue 12,pp. 983-1005, 2004
[22] M. Zhang, B.K. Gunturk, "Multiresolution Bilateral Filtering for Image Denoising", IEEE Transactions on Image Processing, Volume: 17, Issue: 12, pp. 2324-2333, 2008.
[23] T. Kanade, M. Okutomi, "A stereo matching algorithm with an adaptive window: theory and experiment", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume: 16, Issue: 9, pp. 920-932, 1994
[24] O. Veksler, "Stereo correspondence by dynamic programming on a tree", CVPR 2005, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.384-390, 2005
[25] Z.N. Li, "Stereo correspondence based on line matching in Hough space using dynamic programming", IEEE Transactions on Systems, Man and Cybernetics, Volume: 24, Issue: 1, pp. 144-152, 1994
[26] J. Sun, N.N. Zheng, H.Y. Shum, "Stereo matching using belief propagation", IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 787-800, 2003
[27] D.A. Lima, G.B. Vitor, A.C. Victorino, J.V. Ferreira, "A disparity map refinement to enhance weakly-textured urban environment data", International Conference on Advanced Robotics (ICAR), pp. 1-6, 2013
[28] H. Li, G. Chen, "Segment-based stereo matching using graph cuts", CVPR 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 74-81, 2004
[29] R. Yang, M. Pollefeys, S. Li, "Improved Real-Time Stereo on Commodity Graphics Hardware", CVPRW '04, Conference on Computer Vision and Pattern Recognition Workshop, p.36, 2004
[30] H. Haberdar, S.K. Shah, "Disparity Map Refinement for Video Based Scene Change Detection Using a Mobile Stereo Camera Platform", 20th International Conference on Pattern Recognition (ICPR), pp. 3890-3893, 2010
[31] S. Rohl, S. Speidel, D. Gonzalez-Aguirre, S. Suwelack, H. Kenngott, T. Asfour, B.P. Muller-Stich, R. Dillmann, "From stereo image sequences to smooth and robust surface models using temporal information and Bilateral postprocessing", IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 544-550, 2011
[32] R.J. Mayer, “IDEF0 Function Modeling”, Air Force Systems Command, 1992
[33] C.H. Chen, C.M. Kuo, C.Y. Chen, J.H. Dai, “The design and synthesis using hierarchical robotic discrete-event modeling”, Journal of Vibration and Control, vol. 19, no. 11, pp.1603–1613, 2013
[34] C.H. Chen, J.H. Dai, "Design and high-level synthesis of hybrid controller", Sensing and Control, 2004 IEEE International Conference on Networking, vol.1, pp.21-23, 2004
[35] Altera, DE2-115 User Manual
[36] Omni Vision OV7725 datasheet
[37] Quartus II 簡介
[38] Y.H. Huang, “Design and Implementation of a High-Efficiency Segmentation Hardware Accelerator and Application in Stereo Vision”, National Central University, 2011