跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周妤庭
Yu-Ting Chou
論文名稱: 聲學相機理論基礎與實驗
Theoretical Foundations and Experiments of Acoustic Camera
指導教授: 鍾德元
Te-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 80
中文關鍵詞: 聲音相機克希荷夫繞射理論
外文關鍵詞: Acoustic Camera, Kirchhoff Diffraction Theory
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在建立一套適用於近場聲源重建之聲學相機系統,透過理論推導、數值模擬與實驗設計,提出聲源定位之有效方法。首先從聲波波動方程、Green’s function與Kirchhoff積分理論出發,推導出聲場與聲源之數學關係,再透過數位化程序轉換成可用於數值計算之形式,建立完整的理論基礎。接續透過數值模擬,分析麥克風陣列的設計參數對聲源定位之影響。最後設計並建置實驗設備,測試聲學相機系統實務上的可行性,以期能有效提升近場聲源定位之應用潛力。


    This study aims to develop an acoustic camera system suitable for near-field sound source reconstruction by proposing an effective localization method through theoretical derivation, numerical simulation, and experimental design. The research begins with the acoustic wave equation, Green’s function, and Kirchhoff integral theory to derive the mathematical relationship between the sound field and the sound source. This relationship is then digitized into a form suitable for numerical computation, thereby establishing a comprehensive theoretical foundation. Subsequently, numerical simulations are conducted to analyze the influence of microphone array design parameters on source localization performance. Finally, an experimental system is designed and implemented to evaluate the practical feasibility of the proposed acoustic camera, with the ultimate goal of enhancing its application potential in near-field sound source localization.

    中文摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 第一章 緒論 1 1-1 簡介聲音相機 1 1-2波束成形(BEAMFORMING)演算法 1 1-3近場聲學全像演算法 2 1-4 研究目的與動機 3 1-5 論文架構 3 第二章 背景知識 5 2-1 聲波波動方程式 5 2-2 GREEN’S FUNCTION 5 2-3 KIRCHHOFF DIFFRACTION THEORY 6 2-3-1 簡介Kirchhoff Diffraction Theory 6 2-3-2 簡介歷史上已發展的Kirchhoff Diffraction Theory推演法 6 2-3-3 變換Kirchhoff Diffraction Theory的時間順序 8 2-4 由場(FIELD)求得聲源(SOURCE) 8 第三章 方程式的數值計算形式 10 3-1 數位化理論方程式 10 3-1-1 觀察面為包覆球面時的數位理論方程式 11 3-1-2 觀察面為平面時的離散理論方程式 14 3-2 麥克風代表面積問題探討 17 第四章 訊號後處理程式與模擬 19 4-1 單一麥克風對回溯聲場的貢獻 19 4-2 兩個麥克風在回溯聲場中的貢獻 23 4-3 複數個麥克風回溯聲場 25 4-3-1不同立體空間分布的麥克風陣列 25 4-3-2在平面上不同分布圖形的麥克風陣列 27 4-3-3麥克風陣列與計算聲場格點的距離 28 4-4重建聲源之判斷法 29 4-4-1 聲場振幅極值 30 4-4-2 以聲紋延續時間為判別 30 4-5 使用虛擬聲源替代實驗數據聲紋 31 第五章 實驗設備 32 5-1 邊界環境控制 32 5-2 聲源 33 5-3 麥克風陣列板整體設計製作 34 5-3-1 麥克風模組 34 5-3-2 麥克風陣列 37 5-4數位擷取裝置 39 第六章 實驗結果與討論 41 6-1 無響空間響應量測 41 6-2 設置替代聲源聲紋 44 6-3 利用聲音相機系統定位單一聲源 46 6-3-1 聲源在不同距離深度 47 6-3-2 目標聲源在與聲軸不同夾角的位置 49 6-4 環境中加上聲波反射面 50 6-4-1 反射面設置於地面 51 6-4-2 反射面設置於牆面 54 第七章 結論 58 參考文獻 59 附錄一 聲音相機論文的幾點補充說明 61

    [1] Miljko Eric, "Some Research Challenges of Acoustic Camera," 19th Telecommunications forum TELFOR 2011, Serbia, Belgrade, November 22-24, 2011, pp. 1036-1039.
    [2] Manrique Ortiz, N., Barré, S., Vonrhein, B., "The Acoustic Camera as a valid tool to gain additional information over traditional methods in architectural acoustics", Energy Procedia, vol. 78, pp. 122–127, 2015.
    [3] Merino-Martinez, R., Snellen, M., & Simons, D., "Determination of aircraft noise variability using an acoustic camera", 23rd International Congress of Sound and Vibration, Athens, Greece, July 10–14, 2016.
    [4] Fiebig, W., Dąbrowski, D., "Use of Acoustic Camera for Noise Sources Localization and Noise Reduction in the Industrial Plant", Archives of Acoustics, vol. 45, no. 1, pp. 111–117, 2020.
    [5] gfai tech GmbH, "Noise | Vibration | Excellence", gfai tech GmbH official website, Accessed June 20, 2025, https://www.gfaitech.com/.
    [6] Elbir, A. M., Mishra, K. V., Vorobyov, S. A., & Heath, R. W. Jr., "Twenty-Five Years of Advances in Beamforming: From Convex and Nonconvex Optimization to Learning Techniques", IEEE Signal Processing Magazine, vol. 40, no. 3, pp. 118–143, June 2023.
    [7] Liu, W., Haardt, M., Greco, M. S., Mecklenbräuker, C. F., & Willett, P., "Twenty-Five Years of Sensor Array and Multichannel Signal Processing: A review of progress to date and potential research directions", IEEE Signal Processing Magazine, vol. 40, no. 3, pp. 80–117, June 2023.
    [8] Maynard, J. D., Williams, E. G., & Lee, Y., "Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH", The Journal of the Acoustical Society of America, vol. 78, no. 4, pp. 1395–1413, 1985.
    [9] Williams, E. G., Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, Academic Press, San Diego, 1999.
    [10] Veronesi, W. A., & Maynard, J. D., "Nearfield acoustic holography (NAH) II. Holographic reconstruction algorithms and computer implementation", The Journal of the Acoustical Society of America, vol. 81, no. 5, pp. 1307–1322, 1987.
    [11] Chardon, G., Daudet, L., Peillot, A., Ollivier, F., Bertin, N., & Gribonval, R., "Near-field acoustic holography using sparse regularization and compressive sampling principles", The Journal of the Acoustical Society of America, vol. 132, no. 3, pp. 1521–1534, 2012.
    [12] Pierce, A. D., Acoustics: An Introduction to Its Physical Principles and Applications, McGraw-Hill, New York, 1981.
    [13] Kreyszig, E., Advanced Engineering Mathematics (10th ed.), International Student Version, John Wiley & Sons, Hoboken, NJ, 2011.
    [14] Born, M., & Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.), Cambridge University Press, Cambridge, 199
    [15] Goodman, J. W., Introduction to Fourier Optics (2nd ed.), McGraw-Hill, New York, 1996.

    QR CODE
    :::