| 研究生: |
周妤庭 Yu-Ting Chou |
|---|---|
| 論文名稱: |
聲學相機理論基礎與實驗 Theoretical Foundations and Experiments of Acoustic Camera |
| 指導教授: |
鍾德元
Te-Yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 聲音相機 、克希荷夫繞射理論 |
| 外文關鍵詞: | Acoustic Camera, Kirchhoff Diffraction Theory |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在建立一套適用於近場聲源重建之聲學相機系統,透過理論推導、數值模擬與實驗設計,提出聲源定位之有效方法。首先從聲波波動方程、Green’s function與Kirchhoff積分理論出發,推導出聲場與聲源之數學關係,再透過數位化程序轉換成可用於數值計算之形式,建立完整的理論基礎。接續透過數值模擬,分析麥克風陣列的設計參數對聲源定位之影響。最後設計並建置實驗設備,測試聲學相機系統實務上的可行性,以期能有效提升近場聲源定位之應用潛力。
This study aims to develop an acoustic camera system suitable for near-field sound source reconstruction by proposing an effective localization method through theoretical derivation, numerical simulation, and experimental design. The research begins with the acoustic wave equation, Green’s function, and Kirchhoff integral theory to derive the mathematical relationship between the sound field and the sound source. This relationship is then digitized into a form suitable for numerical computation, thereby establishing a comprehensive theoretical foundation. Subsequently, numerical simulations are conducted to analyze the influence of microphone array design parameters on source localization performance. Finally, an experimental system is designed and implemented to evaluate the practical feasibility of the proposed acoustic camera, with the ultimate goal of enhancing its application potential in near-field sound source localization.
[1] Miljko Eric, "Some Research Challenges of Acoustic Camera," 19th Telecommunications forum TELFOR 2011, Serbia, Belgrade, November 22-24, 2011, pp. 1036-1039.
[2] Manrique Ortiz, N., Barré, S., Vonrhein, B., "The Acoustic Camera as a valid tool to gain additional information over traditional methods in architectural acoustics", Energy Procedia, vol. 78, pp. 122–127, 2015.
[3] Merino-Martinez, R., Snellen, M., & Simons, D., "Determination of aircraft noise variability using an acoustic camera", 23rd International Congress of Sound and Vibration, Athens, Greece, July 10–14, 2016.
[4] Fiebig, W., Dąbrowski, D., "Use of Acoustic Camera for Noise Sources Localization and Noise Reduction in the Industrial Plant", Archives of Acoustics, vol. 45, no. 1, pp. 111–117, 2020.
[5] gfai tech GmbH, "Noise | Vibration | Excellence", gfai tech GmbH official website, Accessed June 20, 2025, https://www.gfaitech.com/.
[6] Elbir, A. M., Mishra, K. V., Vorobyov, S. A., & Heath, R. W. Jr., "Twenty-Five Years of Advances in Beamforming: From Convex and Nonconvex Optimization to Learning Techniques", IEEE Signal Processing Magazine, vol. 40, no. 3, pp. 118–143, June 2023.
[7] Liu, W., Haardt, M., Greco, M. S., Mecklenbräuker, C. F., & Willett, P., "Twenty-Five Years of Sensor Array and Multichannel Signal Processing: A review of progress to date and potential research directions", IEEE Signal Processing Magazine, vol. 40, no. 3, pp. 80–117, June 2023.
[8] Maynard, J. D., Williams, E. G., & Lee, Y., "Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH", The Journal of the Acoustical Society of America, vol. 78, no. 4, pp. 1395–1413, 1985.
[9] Williams, E. G., Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, Academic Press, San Diego, 1999.
[10] Veronesi, W. A., & Maynard, J. D., "Nearfield acoustic holography (NAH) II. Holographic reconstruction algorithms and computer implementation", The Journal of the Acoustical Society of America, vol. 81, no. 5, pp. 1307–1322, 1987.
[11] Chardon, G., Daudet, L., Peillot, A., Ollivier, F., Bertin, N., & Gribonval, R., "Near-field acoustic holography using sparse regularization and compressive sampling principles", The Journal of the Acoustical Society of America, vol. 132, no. 3, pp. 1521–1534, 2012.
[12] Pierce, A. D., Acoustics: An Introduction to Its Physical Principles and Applications, McGraw-Hill, New York, 1981.
[13] Kreyszig, E., Advanced Engineering Mathematics (10th ed.), International Student Version, John Wiley & Sons, Hoboken, NJ, 2011.
[14] Born, M., & Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.), Cambridge University Press, Cambridge, 199
[15] Goodman, J. W., Introduction to Fourier Optics (2nd ed.), McGraw-Hill, New York, 1996.