| 研究生: |
巫世榮 Shih_Rung Wu |
|---|---|
| 論文名稱: |
二維品質度量之直接與間接參數估計 Direct and Indirect parametric Estimations of Two Dimentional Quality Measures |
| 指導教授: |
許玉生
YU-SHENG HSU |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 28 |
| 中文關鍵詞: | 最大概似估計 、間接參數估計 、中央極限定理 、直接參數估計 |
| 外文關鍵詞: | Maximum likelihood estimator, Central limit theorem, Indirect parametric estimation, Direct parametric estimation |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工業統計上,產品品質的度量方法有很多,例如製程能力指標(Process Capability Indices)、故障率(Hazard Rates)及平均剩餘壽命(Mean Residual Life)等。通常產品之二維品質,都有二種表示方式,也因此有二種估計方式,本文主要目的在比較此二種估計方法之優劣。
In the industrial statistics , there are many measurable ways(example: Process Capability indices、Hazard Rates、Mean Residual Life、etc…) in quality control.
In generality , product have two reports in the two-dimensional quality. Thus , they have two estimable ways. In this paper , we will compare fit and unfit in this two estimable ways.
[1] Andersen,P.K., Borgan,O., Gill,R.D. and Keiding,N.(1993). Statistical
methods based on counting process. Springer-Verlag.
[2] Arnold,B.C. and Zahedi,H.(1988). On multivariate mean remaining life
functions. Journal of Multivariate Analysis, 25, pp.1-9.
[3] Bothe,D.R.(1997). Measuring process capability. McGraw-Hill.
[4] Boyles,R.A.(1996b). Multivariate process analysis with lattice data.
Technometrics, 38, pp.37-49.
[5] Chan,L.K., Cheng,S.W. and Spring,F.A.(1988b). A new measure of process
capability Cpm. Journal of Quality Technology 20, pp.162-175.
[6] Chan,L.K., Cheng,S.W. and Spring,F.A.(1991). A multivariate measure of
process capability. International Journal of Modeling and Simulation 11,
pp.1-6.
[7] Chen,H.(1994). A multivariate process capability index over a rectangular
solid tolerance zone. Statistica Sinica 4, pp.749-758.
[8] Fleming,T.R. and Harrington,D.P.(1991). Counting process and survival
analysis. Wiley.
[9] Gupta,R.D. and Kundu,D.(1999). Generalized exponential distributions.
Austral. and New Zealand J. Statiat., 41, 2, pp.173-188.
[10] Huang,J.Z., Kooperberg,C., Stone,C.J. and Truong,Y.K.(2000). Functional
anova modeling for proportional hazards regression. Ann. Statist., 28, 4,
pp.961-999.
[11] Juran,J.M., Gryna,F.A. and Bingham,R.S.(1974). Quality control handbook.
Mcgraw-Hill.
[12] Jeong,D., Song,J and Sohn, J.(1996). Nonparameteric esitimation of
bivariate mean residual life function under univariate censoring. Jourual
of Korean Statistical society, 25, pp.133-144.
[13] Klein,J.P. and Moeschberger,M.L.(1997). Survival Analysis. Springer-Verlag.
[14] Kotz,S. and Johnson,N.L.(1993a).process capability indices. Chapman and
Hall, London,U.K.
[15] Kotz,S. and Johnson,N.L.(2002). Process capability-A review,1992-2000.
Journal of Quality Technology, pp.2-53.
[16] Kotz,s. and Lovelace,C.(1998). Introduction to process capability indices.
Arnold, London,U.K.
[17] Kuljarni,H.V. and Rattihalli,R.N.(1994). On characterization of bivariate
mean residual life function. IEEE Transations on Reliability, 38, pp.362-
364.
[18] Kuljarni,H.V. and Rattihalli,R.N.(2002). Nonparametric estimation of a
bivariate mean residual life function. JASA,97, pp907-917.
[19] Lin,D.Y. and Ying,Z.(1993). A simple nonparametric estimation of the
bivariate survival function under univariate censoring. Biometrika, 80,
pp.573-581.
[20] Meeker,W.Q. and Escobar,L.A.(1998). Statistical methods for reliability
data. Wiley.
[21] Mudholkar,G.S., Srivastava,D.K. and Freimer,M.(1995). The Exponentiated
Weibull Family : A reanalysis of the Bus-Motor-Failure data. Theoretrical
expansion of observed decreasing failure rate. Technometrics,42,1, pp.7-11.
[22] Nair,K.R.M. and Nair,U.N.(1989). Bivariate mean residual life. IEEE
Transactions on Reliability,38, pp.362-364.
[23] Nelson,W.(2000). Theory and applications of hazard plotting for censored
failure data. Technometrics, Vol 42, No 1, pp.12-25.
[24] Proschan, F.L.(2000). Theoretrical expansion of observed decreasing
failure rate. Technometrics, 42, 1, pp.7-11.