| 研究生: |
劉舜凱 Shun-Kai Liu |
|---|---|
| 論文名稱: |
利用序列核苷酸分佈分析預測人類 mRNA多聚腺苷酸化作用點 Prediction of mRNA polyadenylation sites in human genes bynucleotide composition |
| 指導教授: |
洪炯宗
Jorng-Tzong Horng 吳立青 Li-Ching Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 多聚腺甘酸化 、預測 、序列核苷酸分佈 |
| 外文關鍵詞: | nucleotide composition, polyadenylation sites, prediction, support vector machine |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
mRNA 上的多聚腺苷酸化在人類基因中是一項重要的機制,並且直接關係到轉錄的終結。而人類基因上的多聚腺苷酸化具有多重的作用點,選擇不同的作用點將會改變 3’UTR 的長度。mRNA 的 3’UTR 中包含了許多調控因子,因此多聚腺苷酸化作用點的選擇就非常重要。正確的預測多聚腺苷酸化作用點能夠幫助了解作用點選擇的機制。本研究的目的是要利用核苷酸分佈分析,設計一個預測人類基因中 mRNA 多聚腺苷酸化作用點的方法。此分析利用了新的定序技術PET(Paired-End diTag),PET 能準確的對應到多聚腺苷酸尾前端,有助於多聚腺苷酸化作用點的預測。此外本研究還個別分析了包含基因中唯一作用點的序列與包含基因中有複數作用點的序列。經過分析發現兩種序列在核苷酸分佈機率上有一點差異。
mRNA polyadenylation is an essential mechanism in human genes, it is direct linked to termination of transcription. And alternative polyadenylation changes
the length of mature mRNAs 3’UTRs. Since 3’UTRs have been shown to contain regulatory elements controlling mRNA, alternative polyadenylation plays an important role in human genes. Prediction of polyadenylation sites can help identify genes and understand mechanism of alternative polyadenylation. In this study, we constructed a system of mRNA polyadenylation sites prediction in human genes using
SVM, based on analysis of sequences align between pair-end diTags (PET) and genome sequences. The PET sequences can mapped to the reference genome more
accurate compare with past methodology. We also analyzed single-site type and multiple-site type sequences PET sequences dataset. We found that the frequencies of each nucleotide between single-site type and multiple-site type were different.
References
1. Maniatis, T. and R. Reed, An extensive network of coupling among gene
expression machines. Nature, 2002. 416(6880): p. 499-506.
2. Keller, W. and L. Minvielle-Sebastia, A comparison of mammalian and yeast
pre-mRNA 3''-end processing. Curr Opin Cell Biol, 1997. 9(3): p. 329-36.
3. Zarudnaya, M.I., et al., Downstream elements of mammalian pre-mRNA
polyadenylation signals: primary, secondary and higher-order structures.
Nucleic Acids Res, 2003. 31(5): p. 1375-86.
4. Liu, H., et al., An in-silico method for prediction of polyadenylation signals in
human sequences. Genome Inform, 2003. 14: p. 84-93.
5. Tian, B., et al., A large-scale analysis of mRNA polyadenylation of human and
mouse genes. Nucleic Acids Res, 2005. 33(1): p. 201-12.
6. Dreyfus, M. and P. Regnier, The poly(A) tail of mRNAs: bodyguard in
eukaryotes, scavenger in bacteria. Cell, 2002. 111(5): p. 611-3.
7. Touriol, C., et al., Expression of human fibroblast growth factor 2 mRNA is
post-transcriptionally controlled by a unique destabilizing element present in
the 3''-untranslated region between alternative polyadenylation sites. J Biol
Chem, 1999. 274(30): p. 21402-8.
8. Knirsch, L. and L.B. Clerch, A region in the 3'' UTR of MnSOD RNA enhances
translation of a heterologous RNA. Biochem Biophys Res Commun, 2000.
272(1): p. 164-8.
9. Kislauskis, E.H., X.C. Zhu, and R.H. Singer, Sequences Responsible for
Intracellular-Localization of Beta-Actin Messenger-Rna Also Affect Cell
Phenotype. Journal of Cell Biology, 1994. 127(2): p. 441-451.
10. Chiu, K.P., et al., PET-Tool: a software suite for comprehensive processing
and managing of Paired-End diTag (PET) sequence data. BMC
Bioinformatics, 2006. 7: p. 390.
11. Bennett, C.L., et al., A rare polyadenylation signal mutation of the FOXP3
gene (AAUAAA -> AAUGAA) leads to the IPEX syndrome. Immunogenetics,
2001. 53(6): p. 435-439.
12. Brown, P.H., L.S. Tiley, and B.R. Cullen, Efficient Polyadenylation within the
Human-Immunodeficiency-Virus Type-1 Long Terminal Repeat Requires
Flanking U3-Specific Sequences. Journal of Virology, 1991. 65(6): p.
3340-3343.
13. Carswell, S. and J.C. Alwine, Efficiency of utilization of the simian virus 40
late polyadenylation site: effects of upstream sequences. Mol Cell Biol, 1989.
9(10): p. 4248-58.
14. Hall-Pogar, T., et al., Alternative polyadenylation of cyclooxygenase-2.
Nucleic Acids Res, 2005. 33(8): p. 2565-79.
15. Valsamakis, A., et al., The Human-Immunodeficiency-Virus Type-1
Polyadenylylation Signal - a 3'' Long Terminal Repeat Element Upstream of
the Aauaaa Necessary for Efficient Polyadenylylation. Proceedings of the
National Academy of Sciences of the United States of America, 1991. 88(6): p.
2108-2112.
16. Legendre, M. and D. Gautheret, Sequence determinants in human
polyadenylation site selection. BMC Genomics, 2003. 4(1): p. 7.
17. Salamov, A.A. and V.V. Solovyev, Recognition of 3''-processing sites of
human mRNA precursors. Comput Appl Biosci, 1997. 13(1): p. 23-8.
18. Tabaska, J.E. and M.Q. Zhang, Detection of polyadenylation signals in human
DNA sequences. Gene, 1999. 231(1-2): p. 77-86.
19. Cheng, Y., R.M. Miura, and B. Tian, Prediction of mRNA polyadenylation
sites by support vector machine. Bioinformatics, 2006. 22(19): p. 2320-5.
20. Chen, F., C.C. Macdonald, and J. Wilusz, Cleavage Site Determinants in the
Mammalian Polyadenylation Signal. Nucleic Acids Research, 1995. 23(14): p.
2614-2620.
21. Chang, T.H., J.T. Horng, and H.D. Huang, RNALogo: a new approach to
display structural RNA alignment. Nucleic Acids Res, 2008. 36(Web Server
issue): p. W91-6.
22. Beaudoing, E., et al., Patterns of variant polyadenylation signal usage in
human genes. Genome Res, 2000. 10(7): p. 1001-10.
23. Lee, J.Y., et al., PolyA_DB 2: mRNA polyadenylation sites in vertebrate genes.
Nucleic Acids Res, 2007. 35(Database issue): p. D165-8.
24. Tzanis, G., I. Kavakiotis, and I. Vlahavas, Polyadenylation Site Prediction
Using Interesting Emerging Patterns. IEEE International Conference on
BioInformatics and BioEngineering, 2008. 8.