跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林里旺
LIN,LI-WANG
論文名稱: 以雷射直寫技術於銀離子交換玻璃 製作表面增強拉曼基板
Fabrication of surface enhanced Raman substrate based on laser direct writing on Na+-Ag+ ion exchanged glass
指導教授: 戴朝義
Tai, Chao-Yi
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 42
中文關鍵詞: 拉曼
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用以雷射直寫技術於銀離子交換玻璃製作表面增強拉曼基板,在以雷射寫出銀結構後以BOE (Buffered Oxide Etchant)進行蝕刻,並且對其進行石墨烯的轉移,量測其拉曼散射訊號,最後成功的量測到石墨烯的表面增強拉曼散射訊號,若能將基板進行表面平坦化後可作為一具有表面增強拉曼活性基板。


    This study describes the fabrication of a surface enhanced Raman substrate utilizing laser direct writing technology. After field-assisted ion exchanged process, a cw green laser light is used to reduce the in-diffused silver ions. Etching is subsequently performed using BDE (Buffered Oxide Etchant) to expose the nanostructures. Graphene is then transferred on top of the substrate, acting as a probe for the Raman-active substrate. Raman signatures such as the G-band and D-band are successfully measured which correlates closely with the measured surface profiles.

    中文摘要 iii Abstract vi 誌謝 vii 目錄 viii 圖目錄 ix 表目錄 x 第一章 緒論 1 1-1 前言 1 1-2研究動機 4 1-3論文架構 6 第二章 研究方法 7 2-1銀離子熱還原之機制 7 2-2奧斯瓦爾德熟化 8 2-3銀離子光還原之機制 10 2-4拉曼光譜學簡介 11 2-5表面增強拉曼散射簡介 13 第三章 實驗設計與架構 14 3-1樣品製作與實驗架構 14 3-1-1銀離子交換玻璃之製備 14 3-1-2利用雷射進行銀還原之方法 17 3-1-3石墨烯轉移至樣品上之方法 18 3-1-4拉曼散射量測架構 19 3-2原子力顯微鏡AFM((atomic force microscopy)簡介 20 3-2 SEM(scanning electron microscopy)簡介 21 第四章 實驗結果與討論 22 第五章 結論與展望 29 參考文獻 30

    [1] Kneipp, K. (2007). Surface-enhanced Raman scattering. Physics Today, 60(11), 40-46. https://doi.org/10.1063/1.2812122
    [2] Nyman, R. A. (2017). Absorption and Fluorescence spectra of Rhodamine 6G [Data set]. Zenodo. https://doi.org/10.5281/zenodo.569817
    [3] Ou, J., Hu, Y., Huang. (2018). L. et al. pH-sensitive nanocarriers for Ganoderma applanatum polysaccharide release via host–guest interactions. J Mater Sci 53, 7963–7975. https://doi.org/10.1007/s10853-018-2091-0.
    [4] Rhodamine 6G Dye SERS Spectral SERSitive: Accurate SERS Substrates. (n.d.). Sersitive. https://sersitive.eu/application_types/dyes/rhodamine-6g/
    [5] 表面增強拉曼芯片(Phan 2 SERS Substrate). (n.d.). 汎鍶科藝. https://phansco.com/tw/technology/3
    [6] Evaluating a Novel Approach to SERS. (n.d.). NikaLyte. https://www.nikalyte.com/wp-content/uploads/WP-AN-SERS-Substrates-RevA-web.pdf
    [7] Mikella E. Hankus, Dimitra N. Stratis-Cullum, Paul M. Pellegrino.(2011) "Surface enhanced Raman scattering (SERS)-based next generation commercially available substrate: physical characterization and biological application," Proc. SPIE 8099, Biosensing and Nanomedicine IV, 80990N; https://doi.org/10.1117/12.893842
    [8]Chen, Y., Jaakola, J., Säynätjoki,A., Tervonen, A., Honkanen, S. (2010). Glass‐embedded silver nanoparticle patterns by masked ion‐exchange process for surface‐enhanced Raman scattering. Journal of Raman Spectroscopy. https://doi.org/10.1002/jrs.2784
    [9] Perry, D.L. (2011). Handbook of Inorganic Compounds (2nd ed.). CRC Press. https://doi.org/10.1201/b10908
    [10] Simo, A., Polte, J., Pfänder, N., Vainio, U., Emmerling, F., & Rademann, K. (2012). Formation mechanism of silver nanoparticles stabilized in glassy matrices. Journal of the American Chemical Society, 134(45), 18824–18833. https://doi.org/10.1021/ja309034n.
    [11] Alemán, J., Chadwick, A., He, J., Hess, M., Horie, K., Jones, R., Kratochvíl, P., Meisel, I., Mita, I., Moad, G., Penczek, S. & Stepto, R. (2007). Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure and Applied Chemistry, 79(10), 1801-1829. https://doi.org/10.1351/pac200779101801
    [12] Ratke, L ., Voorhees, P, W. (2002). Growth and Coarsening:Ostwald Ripening in Material Processing (1st ed.). Springer-Verlag Berlin Heidelberg New York. https://doi.org/10.1007/978-3-662-04884-9.
    [13]Yuki, K., Hideyuki, I., Seiji, F., Toshio, S., Tsuneo, M., Toshinobu, Y., Kazuyuki, H., (2000). Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process. J. Appl. Phys. 88 (3): 1244–1250. https://doi.org/10.1063/1.373810
    [14] Fleischmann, M., Hendra, P.J. and McQuillan, A.J. (1974) Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters, 26, 163-166.
    https://doi.org/10.1016/0009-2614(74)85388-1
    [15] Smekal, A. Zur Quantentheorie der Dispersion. Naturwissenschaften 11, 873–875 (1923). https://doi.org/10.1007/BF01576902
    [16] Raman, C. V. (1928). "A new radiation". Indian Journal of Physics. 2: 387–398. hdl:10821/377.
    [17]Jeanmaire, D.L., & Duyne, R.P. (1977). Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry, 84, 1-20.
    [18]Albrecht, M. G., & Creighton, J. A. (1977). Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 99(15), 5215-5217.
    [19]陳景翔, 黃志清, 陳冠榮, & 黃炳照. (2012). 拉曼散射之表面訊號增益技術應用. 科儀新知, 33(5).
    [20] Raman vs SERS… What’s the Difference? (n.d.). Metrohm. https://www.metrohm.com/zh_tw/discover/blog/20-21/raman-vs-sers--what-s-the-difference-.html
    [21]Wackerow, S., Seifert, G., Abdolvand, A. (2011). Homogenous silver-doped nanocomposite glass. Optical Materials Express, 1(7), 1224-1231.
    [22] Gonella, F., Cattaruzza, E., Quaranta, A., Ali, S., Argiolas, N., Sada, C., (2006). Diffusion behavior of transition metals in field-assisted ion-exchanged glasses. Solid State Ionics. 177. 3151-3155. 10.1016/j.ssi.2006.07.047.
    [23] Gonella, F., Cattaruzza, E., Quaranta, A., Ali, S., Argiolas, N., Sada, C., (2006). Diffusion behavior of transition metals in field-assisted ion-exchanged glasses. Solid State Ionics. 177. 3151-3155. 10.1016/j.ssi.2006.07.047.
    [24] Kapila, D. (1995). Diffusion processes for integrated waveguide fabrication in glasses: A solid-state electrochemical approach (Order No. 9622911). https://doi.org/10.1016/0009-2509(95)00115-L
    [26] Ziemath, E., Araújo, V., Escanhoela Jr, C., (2008). Compositional and Structural Changes at the Anodic Surface of Thermally Poled Soda-Lime float Glass. Journal of Applied Physics. 104. 054912 - 054912. https://doi.org/10.1063/1.2975996.
    [27] Zhang, A.Y., Suetsugu, T., & Kadono, K. (2007). Incorporation of silver into borosilicate glasses by a classical staining process. Journal of the Ceramic Society of Japan, 115, 47-51.
    [28] User Instruction. (n.d.). ACS Material. https://www.acsmaterial.com/pub/media/wysiwyg/upload/124/User%20Instruction%20ACS%20Material%20TTG.pdf
    [29]黃英碩. (2005)"掃描探針顯微術的原理及應用," 科儀新知
    [30]Mohammed, A., Abdullah, A. (2018). Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania (Vol. 2018, pp. 7-9).
    [31]Wall, M., Madison,W (2022). The Raman Spectroscopy of Graphene and the Determination of Layer Thickness. Thermofisher. https://assets.thermofisher.com/TFS-Assets/MSD/Application-Notes/raman-spectroscopy-graphene-determination-layer-thickness-an52252.pdf
    [32]Scardaci, V., Giuseppe, C., (2021). "Raman Spectroscopy Investigation of Graphene Oxide Reduction by Laser Scribing" C 7, no. 2: 48. https://doi.org/10.3390/c7020048

    QR CODE
    :::