| 研究生: |
鍾秋峰 Chiou-Feng Jueng |
|---|---|
| 論文名稱: |
非線性振動系統之動態分析及系統判別 The Dynamics Analysis of Nonlinear Vibration System and Modeling of a Rotating System |
| 指導教授: |
張江南
Jiang-Nan Jang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 控制 、振動 |
| 外文關鍵詞: | control, Vibration |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文討論非線性振動系統之吸振器動態及轉動系統模化,對於吸振器之討論,以不對稱非線性振動系統為數學模型。整體架構大略為以下步驟: 首先推導其振動模式,包含主振系統及吸振器部分之非線性振動方程式。然後分析此二系統之動態特性,使用分析工具為 Harmonic Balance, Floquet Theory。六組不同系統參數造成各種不同之動態行為,結果在較高頻區域有二或三區塊顯示分歧現象(Bifurcation Phenomena),並在共存區之鞍點-節點分歧現象裏,主要共振區右側峰值為存在於吸振器之操作頻帶,其分析結果說明新的共存現象發生於很強的非線性系統。之後處理穩定性的問題,更深入探討系統之變化,隨參數之改變,完整描述系統動態結構的轉變。最後為模化的探討,本文的方法為使用不平衡引發之旋轉力,計算其輸入作用力及輸出振幅間相角關係,以完成其參數判別。利用根軌跡及Floquet-Liapunov 理論,驗證其穩定性分析結果,再從電腦模擬結果與實驗比較,證明此種方法之可行性。
ABSTRACT
In this study, we concern with the dynamics behavior of nonlinear vibration system that contain absorber and modeling of a rotating system. For the absorber system, a mathematical model of an asymmetrically nonlinearity is proposed. The analytical work on this nonlinear vibration absorber was performed by the harmonic balance method using Floquet theory. We analyze six cases of dynamic phenomena with various system parameters. Two or three unstable regions show bifurcation phenomena at a high vibration frequency. The right peak of the primary resonance of the saddle-node bifurcation in the region of coexistence is close to the bandwidth of the absorber. The results demonstrate that new phenomena will occur in a strongly nonlinear system. For the system modeling, the centrifugal force induced by an unbalanced mass is used as the input signal, and the phase between the input signal and the measured output vibration amplitude is calculated to perform the identification. Stability analysis and system performance are evaluated by using the root locus and the Floquet-Liapunov theorem. A comparison between the simulation results and some experimented data shows the feasibility of the proposed approach.
References
1. H. Frahm, “Device for Damping Vibration of Bodies”, U.S. Patent No. 989, 958, 1911.
2. J. Ormondroyed and J. P. Den Hartog, “Theory of Dynamic Vibration Absorbers”, Trans. ASME, Vol. 50, PAPM-241, 1928.
3. J. P. Den Hartog, “Mechanical Vibrations, 4th ed.”, McGraw-Hill, New York, 1956.
4. R.E. Roberson, “Synthesis of a Nonlinear Dynamic Vibration Absorber”, Journal of the Franklin Institute, Vol. 254, pp. 205-220, 1952.
5. H. J. Rice and J.R. Mc Craith. “Practical Nonlinear Vibration Absorber Design”, J. of Sound and Vib. Vol. 116(3), pp. 545-559, 1987.
6. J. C. Nissen and K. Kopp, B. Schmalhorst, "Optimization of a Nonlinear Dynamic Vibration Absorber", J. of Sound and Vib., Vol. 99(1), pp. 149-154, 1985.
7. P. Friendmann, C. E. Hammond and T. H. Woo, “Efficient Numerical Treatment of Periodic Systems with Application to Stability Problems”, International Journal for Numerical Methods in Engineering, Vol. 11, pp.1117-1136, 1977.
8. H. F. Baure, “Steady State Harmonic and Combination Response of a Non-linear Dynamic Vibration Absorber”, Trans. ASME J. Appl. Mech. 33, No. 1, pp. 213-216, 1996.
9. A. F. Potekhin and Ye. I. Frenkel, “Vibrations in a system with a non-linear dynamic absorber with a clearance-elasticity characteristic”, Tr. Tambovskogo in-takhim. mashino-stroyeniya. No. 3, pp.149-155, 1969.
10. N. Kloster and C. Knudsen, “Bifurcations near 1:2 subharmonic resonance in a structural dynamics model”, Chaos, Solitons and Fractals 5, pp. 55-66. 1995.
11. W. Szemplińska-Stupnicka and J. Rudowski, “Local methods in predicting occurrence of chaos in two-well potential systems: superharmonic frequency region”, Journal of Sound Vibration 152, pp. 57-72. 1992.
12. H. G. Schuster, “Deterministic chaos – an introduction”, Physik-Verlag, Weinheim, pp. 126-130. 1984.
13. K.B. Blair, C.M. Krousgrill and T.N. Farris, “Nonlinear Dynamic Response of Shallow Arches to Harmonic Forcing”, J. of Sound and Vib. 202, pp. 717, 1997.
14. Z.-M. Ge, H.-S. Yang, H.-H. Chen and H.-K. Chen, “Regular and chaotic dynamics of a rotational machine with a centrifugal governor”, International Journal of Engineering Science 37, pp. 921-943. 1999.
15. S. W. Shaw, “The dynamics of a harmonically excited system having rigid amplitude constraints, Journal Applied Mechanics”, Transactions of the ASME 52, pp. 453-458. 1985.
16. A. Raghothama and S. Narayanan, “Bifurcation and chaos of an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method”, Ocean Engineering 27, pp. 1087-1107. 2000.
17. C. Holmes and P. J. Holmes, “Second order averaging and bifurcations to subharmonics in Duffing’s equation”, Journal Sound Vibration 78, pp. 161-174. 1981.
18. K. Yagasaki, “Higher-order averaging and ultra-subharmonics in forced oscillators”, Journal of Sound Vibration 210, pp. 529-553. 1998.
19. H. Kawakami, “Bifurcation of periodic responses in forced dynamic nonlinear circuits: computation of bifurcation values of the system parameters”, IEEE Transactions on Circuits and Systems CAS-31, pp. 248-260. 1984.
20. H. Kawakami and T. Yoshinaga, “Codimension Two Bifurcation and its Computational Algorithm”, Bifurcation and Chaos, Theory and Applications Edited by J. Awrejcewicz Springer-Verlag, Berlin, pp. 97-132, 1995.
21. A. H. Nayfeh and D. T. Mook, “Nonlinear Oscillations”, John Wiley & Sons, New York, 1979.
22. C.S. Hsu, “Impulsive Parametric Excitation: Theory” J. Apply. Mech. 39, 551, 1972.
23. J. Guckenheimer and P. Holmes, “Nonlinear oscillations, dynamical systems, and bifurcations of vector fields”, Springer-Verlag, New York, pp. 376-396. 1983.
24. Y. A. Kuznetsov, “Elements of applied bifurcation theory”, Springer-Verlag, New York, 1995.
25. V. J. Steffen and D. A. Rade, ”An Identification Method of Multi-degree-of-Freedom System Based on Fourier Series”, The International Journal of Analytical and Experimental Modal Analysis, Vol.6,No4, Oct., pp.271-278,1991.
26. K. Yasda, S. Kawamura and K. Watanbe, “Identification of Nonlinear Multi-Degree-of Freedom Systems (Presentation of an Identification Technique”, JSME International Journal: Series III, Vol. 31, No.1, pp.8-14, 1988.
27. H. T. Yau, C. K. Chen and C. L. Chen, “Chaos and Bifurcation-Analysis of a Flexible Rotor Supported by Short Journal Bearings with Nonlinear Suspension” Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, Vol 214, Iss 7, pp. 931-947, 2000.
28. Y. C. Hsiao and P. C. Tung, “Coalescence of the primary responses and the secondary responses in a nonautonomous system”, Physics Letters A 291, pp. 237-248, 2001.
29. C. Hayashi, “Nonlinear oscillations in physical systems”, Princeton University Press, Princeton, (Chapter 1), 1964.
30. Y. T. Leung and S. K. Chui, “Non-linear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method”. J. of Sound and Vib., 181(4), pp. 619-633, 1995.
31. A. H. Nayfeh, “Perturbation Methods”, John Wiley & Sons, New York, 1973.
32. P. Friedmann and C.E. Hammond, “Efficient Numerical Treatment of Periodic Systems with Application to Stability Problems”, Int. J. Numer. Method Eng. 11, pp. 1117, 1977.
33. C. Padmanabhan, and R. Singh, “Analysis of periodically excited non-linear systems by a parametric continuation technique”, Journal of Sound Vibration 184, pp. 35-58. 1995.
34. A. Raghothama and S.Narayanan, “Bifurcation and chaos of an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method”, Ocean Engineering 27, pp.1087-1107, 2000.
35. T. SÖderstrÖm, P. Stoica, “System Identification”, Prentice Hall, New York, 1989.
36. K. Szabelski and J. Warminski, ”Parametric Self-Excited Non-linear System Vibrations Analysis with Inertial Excitation”, Int. J. Non-Linear Mechanics, Vol.30, No.2, pp. 179-189, 1995.