| 研究生: |
邱紹安 Shao-An Qiu |
|---|---|
| 論文名稱: |
靜電紡絲結合選擇性無電鍍沉積製作可撓式金屬網絡透明電極 Fabrication of Flexible Metal-web Transparent Electrodes through Selective Electroless Deposition from Electrospun Silver-chelated Polyvinyl Alcohol Nanofibers |
| 指導教授: |
何正榮
Jeng-Rong Ho |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 靜電紡絲 、選擇性無電鍍沉積 、嵌入式可撓性透明電極 、聚乙烯醇 、無電鍍晶種擴散機制 |
| 外文關鍵詞: | electrospinning, selective electroless deposition, polyvinyl alcohol (PVA), seed crystal diffusion mechanism, embedd flexible transparent electrode |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銦錫氧化物(ITO)是透明電極最常使用的材料, 但其主要的缺點是易脆因而無法應用於軟性基板。金屬具有良好的導電性與優異的機械柔韌性,故本研究仍以靜電紡絲技術,將金屬材料圖案化形成一維金屬線,利用線與線之間的間格提供透光度,取代 ITO應用於可撓式金屬透明電極。本研究結合靜電紡絲、選擇性無電鍍沉積與翻膜等技術製作銅線網格可撓式透明電極,即先以靜電紡絲技術形成網絡基底,再透過選擇性無電鍍沉積技術,在纖維絲外側沉積均勻性金屬層,最後藉由溶液翻膜製程將金屬網絡嵌入至聚醯亞胺(Polyimide, PI)膜內形成可撓式透明電極。在此,我們提供一種佈置晶種的新方法來作為無電鍍的基底,僅藉由聚乙烯醇(Polyvinyl alcohol, PVA)螯合銀離子的機制,透過靜電紡絲技術形成 PVA/Ag 複合奈米纖維,隨後進行熱還原使銀原子在纖維絲表面析出,作為無電鍍銅沉積的晶種。此法直接在電紡奈米纖維上產生銀金屬顆粒作為晶種,能夠取代以往文獻報導在纖維上產生晶種
的繁瑣步驟。利用 TEM 觀察得知藉由螯合機制所佈置的銀顆粒可均勻地分散於奈米纖維表面,隨著加熱時間增加纖維克的銀顆粒向表面移動生成更大尺寸的銀顆粒團簇,故維持適當的加熱時間可避免過多的銀殘留在纖維內部浪費銀晶種,亦可降低硝酸銀用量,節省材料成本。本研究製成的 PVA@Cu 網絡透明電極,其透光度在波長 550 nm 為 94.3 %、片電阻為8.1 Ω/sq,其性能值(Figure of Merit, FoM)與文獻相較相對較佳。進一步,將此透明電極嵌入至 PI 基板製作成可撓式透明電極,能夠降低不同纖維互相交錯造成時所增加的高表面粗糙度。經撓曲測試、抗氧化測試,結果證明適用於可撓式透明電極。
In recent years, the indium tin oxide (ITO) has been the most commonly commercially available material for the transparent electrode. But due to its hard and brittle characteristics, ITO is not able to meat the requirement in flexibility for the emerging flexible electronics. On the other hand, metal has good electrical conductivity and excellent mechanical flexibility.
Therefore, in this study, we propose a new method, which combines both techniques of electrospinning and selective electroless deposition, for fabricating metal-web electrodes. A flexible transparent electrode is fabricated as follows. First, the network of web is formed by the electrospun fibers. Then, a uniform metal thin film is deposited on the fibers by the method of selective electroless deposition. Finally, the metal web is embedded into a polyimine (PI) substrate.
Through making a new electrospun solution, that combines both polyvinyl alcohol (PVA) and silver nitrate (AgNO3), we provide a new method of arranging uniform seed sites for selective electroless deposition. It is based on that silver ions in the PVA/AgNO3 solution are regularly chelated by the PVA. The metal ions in the electrospun fibers can be thermally reduced into atoms and precipitate on the fiber surfaces that serves as the seed sites for the subsequent selective electroless copper deposition. The seed metal particles are thus generated directly from the electrospun nanofibers, which can replace the complicated steps reported in the literature. The TEM pictures show that the silver particles are indeed uniformly dispersed on the surface of the nanofibers and they migrate toward the surface to form larger-sized clusters as the heating time is increased. Thus, appropriate heating arrangement during the thermal reduction process can avoid excessive silver particles residue in the fiber and save the material cost.
The fabricated PVA@Cu-web transparent electrode shows the characteristics of transmittance of 94.3 % (@550 nm) and sheet resistance of 8.1 Ω/sq that is very competitive because its performance value (Figure of Merit, FoM) is better than those reported the literature.
Further, after being embedded into an PI substrate, the flexible transparent electrode, in addition to reducing its surface roughness, shows good flexible and anti-oxidation capabilities and is applicable to flexible transparent electrodes.
[1] Touch Display Research Inc., ITO-replacement report, May 2015 & non ITO transparent conductor technologies, supply chain and market forecast report, 2013, 2014, 2015 and 2016.
[2] Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56.
[3] Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. nature, 363(6430), 603.
[4] Geng, H. Z., Kim, K. K., So, K. P., Lee, Y. S., Chang, Y., & Lee, Y. H. (2007). Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. Journal of the American Chemical Society, 129(25), 7758-7759.
[5] Cho, D. Y., Eun, K., Choa, S. H., & Kim, H. K. (2014). Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells. Carbon, 66, 530-538.
[6] Kim, J. H., Ko, E., Hwang, J., Pham, X. H., Lee, J. H., Lee, S. H., ... & Han, K. N. (2015). Large-scale plasma patterning of transparent graphene electrode on flexible substrates. Langmuir, 31(9), 2914-2921.
[7] Zou, J., Li, C. Z., Chang, C. Y., Yip, H. L., & Jen, A. K. Y. (2014). Interfacial engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells. Advanced Materials, 26(22), 3618-3623.
[8] Liang, J., Li, L., Tong, K., Ren, Z., Hu, W., Niu, X., ... & Pei, Q. (2014). Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS nano, 8(2), 1590-1600.
[9] Wang, R., & Ruan, H. (2016). Synthesis of copper nanowires and its application to flexible transparent electrode. Journal of Alloys and Compounds, 656, 936-943.
[10] Layani, M., Grouchko, M., Shemesh, S., & Magdassi, S. (2012). Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions. Journal of Materials Chemistry, 22(29), 14349-14352.
[11] Finn, D. J., Lotya, M., & Coleman, J. N. (2015). Inkjet printing of silver nanowire networks. ACS applied materials & interfaces, 7(17), 9254-9261.
[12] Maurer, J. H., González-García, L., Reiser, B., Kanelidis, I., & Kraus, T. (2016). Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics. Nano letters, 16(5), 2921-2925.
[13] Kwon, J., Cho, H., Eom, H., Lee, H., Suh, Y. D., Moon, H., ... & Ko, S. H. (2016). Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications. ACS applied materials & interfaces, 8(18), 11575-11582.
[14] Hong, S., Yeo, J., Kim, G., Kim, D., Lee, H., Kwon, J., ... & Ko, S. H. (2013). Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS nano, 7(6), 5024-5031.
[15] Qi, L., Li, J., Zhu, C., Yang, Y., Zhao, S., & Song, W. (2016). Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device. RSC Advances, 6(16), 13531-13536.
[16] Li, D., & Xia, Y. (2004). Electrospinning of nanofibers: reinventing the wheel?. Advanced materials, 16(14), 1151-1170.
[17] Zhao, W., Nugay, I. I., Yalcin, B., & Cakmak, M. (2016). Flexible, stretchable, transparent and electrically conductive polymer films via a hybrid electrospinning and solution casting process: In-plane anisotropic conductivity for electro-optical applications. Displays, 45, 48-57.
[18] Singh, S. B., Hu, Y., Kshetri, T., Kim, N. H., & Lee, J. H. (2017). An embedded-PVA@ Ag nanofiber network for ultra-smooth, high performance transparent conducting electrodes. Journal of Materials Chemistry C, 5(17), 4198-4205.
[19] Wu, H., Hu, L., Rowell, M. W., Kong, D., Cha, J. J., McDonough, J. R., ... & Cui, Y. (2010). Electrospun metal nanofiber webs as high-performance transparent electrode. Nano letters, 10(10), 4242-4248.
[20] An, S., Jo, H. S., Kim, D. Y., Lee, H. J., Ju, B. K., Al‐Deyab, S. S., ... & Yoon, S. S. (2016). Self‐Junctioned Copper Nanofiber Transparent Flexible Conducting Film via Electrospinning and Electroplating. Advanced Materials, 28(33), 7149-7154.
[21] Honma, H., & Kobayashi, T. (1994). Electroless copper deposition process using glyoxylic acid as a reducing agent. Journal of the Electrochemical Society, 141(3), 730-733.
[22] Shu, J., Grandjean, B. P. A., & Kaliaguine, S. (1997). Effect of Cu (OH) 2 on electroless copper plating. Industrial & engineering chemistry research, 36(5), 1632-1636.
[23] Li, J., Hayden, H., & Kohl, P. A. (2004). The influence of 2, 2′-dipyridyl on non-formaldehyde electroless copper plating. Electrochimica Acta, 49(11), 1789-1795.
[24] Oita, M., Matsuoka, M., & Iwakura, C. (1997). Deposition rate and morphology of electroless copper film from solutions containing 2, 2′-dipyridyl. Electrochimica Acta, 42(9), 1435-1440.
[25] Gan, X., Wu, Y., Liu, L., Shen, B., & Hu, W. (2007). Electroless copper plating on PET fabrics using hypophosphite as reducing agent. Surface and Coatings Technology, 201(16-17), 7018-7023.
[26] Hsu, P. C., Kong, D., Wang, S., Wang, H., Welch, A. J., Wu, H., & Cui, Y. (2014). Electrolessly deposited electrospun metal nanowire transparent electrodes. Journal of the American Chemical Society, 136(30), 10593-10596.
[27] Hsu, H. H., Yeh, J. W., & Lin, S. J. (2003). Repeated 3D nucleation in electroless Cu deposition and the grain boundary structure involved. Journal of The Electrochemical Society, 150(11), C813-C815.
[28] Kim, G. H., Shin, J. H., An, T., & Lim, G. (2018). Junction-free Flat Copper Nanofiber Network-based Transparent Heater with High Transparency, High Conductivity, and High Temperature. Scientific reports, 8(1), 13581.
[29] Song, R., Li, X., Gu, F., Fei, L., Ma, Q., & Chai, Y. (2016). An ultra-long and low junction-resistance Ag transparent electrode by electrospun nanofibers. RSC advances, 6(94), 91641-91648.
[30] Yang, X., Hu, X., Wang, Q., Xiong, J., Yang, H., Meng, X., ... & Chen, Y. (2017). Large-scale stretchable semiembedded copper nanowire transparent conductive films by an electrospinning template. ACS applied materials & interfaces, 9(31), 26468-26475.
[31] Havrlík, M., & Ryparová, P. (2017). The Dependence of Concentration Copper Ions in Nanofibers (PVA) on Composition of Original Basic Electrospin Solution and on Kind of Stabilization. In Key Engineering Materials (Vol. 731, pp. 23-28). Trans Tech Publications.
[32] Abargues, R., Marqués-Hueso, J., Canet-Ferrer, J., Pedrueza, E., Valdés, J. L., Jiménez, E., & Martínez-Pastor, J. P. (2008). High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics. Nanotechnology, 19(35), 355308.
[33] Yen, C. C., Chang, T. C., & Kakinoki, H. (1990). Studies on the preparation and properties of conductive polymer. I. Novel method to prepare metalized plastic from metal chelate of poly (vinyl alcohol). Journal of applied polymer science, 40(1‐2), 53-66.
[34] Liang, K. L., Wang, Y. C., Lin, W. L., & Lin, J. J. (2014). Polymer-assisted self-assembly of silver nanoparticles into interconnected morphology and enhanced surface electric conductivity. RSC Advances, 4(29), 15098-15103.
[35] Testa, A., Bernasconi, R., Yoshikawa, R., Takenaka, I., Magagnin, L., & Shiratori, S. (2017). Transparent flexible electrodes based on junctionless copper nanowire network via selective electroless metallization of electrospun nanofibers. Journal of The Electrochemical Society, 164(12), D764-D770.
[36] Haacke, G. (1976). New figure of merit for transparent conductors. Journal of Applied Physics, 47(9), 4086-4089.
[37] Im, H. G., Jung, S. H., Jin, J., Lee, D., Lee, J., Lee, D., ... & Bae, B. S. (2014). Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS nano, 8(10), 10973-10979.
[38] Alzoubi, K., Hamasha, M. M., Lu, S., & Sammakia, B. (2011). Bending fatigue study of sputtered ITO on flexible substrate. Journal of Display Technology, 7(11), 593-600.
[39] An, S., Kim, Y. I., Jo, H. S., Kim, M. W., Swihart, M. T., Yarin, A. L., & Yoon, S. S. (2018). Oxidation-resistant metallized nanofibers as transparent conducting films and heaters. Acta Materialia, 143, 174-180.
[40] Wu, H., Kong, D., Ruan, Z., Hsu, P. C., Wang, S., Yu, Z., ... & Cui, Y. (2013). A transparent electrode based on a metal nanotrough network. Nature nanotechnology, 8(6), 421.
[41] Ghosh, D. S., Chen, T. L., Mkhitaryan, V., & Pruneri, V. (2014). Ultrathin transparent conductive polyimide foil embedding silver nanowires. ACS applied materials & interfaces, 6(23), 20943-20948.
[42] Yuan, C. G., Guo, S., Song, J., Huo, C., Li, Y., Gui, B., & Zhang, X. (2017). One-step fabrication and characterization of a poly (vinyl alcohol)/silver hybrid nanofiber mat by electrospinning for multifunctional applications. RSC Advances, 7(8), 4830-4839.
[43] Mbhele, Z. H., Salemane, M. G., Van Sittert, C. G. C. E., Nedeljković, J. M., Djoković, V., & Luyt, A. S. (2003). Fabrication and characterization of silver− polyvinyl alcohol nanocomposites. Chemistry of Materials, 15(26), 5019-5024.
[44] Darling, S. B., & Hoffmann, A. (2007). Tuning metal surface diffusion on diblock copolymer films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25(4), 1048-1051.
[45] Kovacs, G. J., & Vincett, P. S. (1982). Formation and thermodynamic stability of a novel class of useful materials: Close-packed monolayers of submicron monodisperse spheres just below a polymer surface. Journal of Colloid and Interface Science, 90(2), 335-351.
[46] Heo, J. H., Shin, D. H., Kim, S., Jang, M. H., Lee, M. H., Seo, S. W., ... & Im, S. H. (2017). Highly efficient CH3NH3PbI3 perovskite solar cells prepared by AuCl3-doped graphene transparent conducting electrodes. Chemical Engineering Journal, 323, 153-159.
[47] Ali, A. H., Shuhaimi, A., & Hassan, Z. (2014). Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes. Applied Surface Science, 288, 599-603.