| 研究生: |
許峰誠 Feng-Cheng Hsu |
|---|---|
| 論文名稱: |
以射頻濺鍍製作異質接面矽太陽能電池之研究 Research on the Heterojunction Silicon Solar Cell using Radio-frequency Sputtering |
| 指導教授: |
李正中
Cheng-Chung Lee 陳昇暉 Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 異質接面 、非晶矽 、射頻濺鍍 、太陽能電池 |
| 外文關鍵詞: | heterojunction, amorphous silicon, Radio-frequency Sputtering, solar cell |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如今產業上的太陽能電池發展多以矽晶圓為主要材料,因為矽晶圓本身材料較貴,且在矽晶圓上產生PN接面 (PN junction) 多是利用離子佈植或雜質擴散的方式,這兩種方式皆是高溫製程,相對的製程成本較高,是以本研究希望以沉積薄膜的方式,在矽晶圓上覆蓋相對摻雜特性的含氫非晶矽薄膜完成異質的PN接面。
因此企圖找出高摻雜濃度 (高導電率) 且低吸收係數的P型含氫非晶矽薄膜,是本研究前半段的目的,因為高導電率、高摻雜的薄膜是較適合應用於製作異質接面太陽能電池。而後半段的目的則是希望對元件做優化的動作,不論是薄膜或基板厚度、半導體─半導體或金屬─半導體接面都是需要被探討並改善的地方,研究中也將針對部分作分析與探討。
實驗中以射頻磁控濺鍍法沉積的P-type a-Si:H薄膜,經過添加硼顆粒於濺鍍源、調變氫氣與氬氣分壓比例和快速熱退火處理後,已具備有高導電率的特性,將其沉積在N-type c-Si基板上,並完成異質接面太陽電池的製作。
研究與分析完本實驗自製的太陽能電池,得到一有1.9%轉換效率的異直接面太陽能電池,其開路電壓VOC約為0.5 V,短路電流密度JSC約為9.6 mA/cm2,填充因子FF約為39.7%。
Silicon wafer is the main material for silicon solar-cell industry. However, to generate a silicon P-N junction solar cell, the material cost and the high-temperature process are expensive. In this study, we aim the deposition of the hydrogenated amorphous silicon (a-Si:H) thin film on the silicon wafer to generate the heterojunction silicon solar cell.
The high doping concentration (high conductivity) and the low absorption coefficient are the important parameters for the P-type a-Si:H thin film, because of the higher doping of the a-Si:H thin film can achieve the higher conversion efficiency of the heterojunction solar cell. We also optimized the thicknesses of the a-Si:H thin film and the substrate wafer to improve the conversion efficiency. Besides, the interfaces of the semiconductor ─ semiconductor and metal ─ semiconductor have been analyzed explored to improve the performance of the solar cells.
The a-Si:H heterojunction solar cells have been fabricated using radio-frequency magnetron sputtering to deposit a P-type a-Si: H film on the N-type Si wafer. The sputtering target is a bulk P-type Si with boron grains on it. We modulated the hydrogen and argon partial pressure ratio and the rapid thermal annealing to control the quality of the P-type a-Si:H thin film. The results show the P-type a-Si:H thin film behaved highly conductive.
After depositing the P-type a-Si:H thin film on the N-type Si substrate to form the heterojunction solar cell, the conversion efficiency of the solar cell is 1.9%, the open circuit voltage VOC is about 0.5 V, the short-circuit current density JSC is about 9.6 mA/cm2 and fill factor FF is about 39.7% .
[1] L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, R. Martins,“Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell”, Solar Energy Mater. Solar Cells, 87/1-4, 349-355 (2005).
[2] 黃冠禎,《太陽能的發展與應用》, 中山工商 (2008)
[3] 顧鴻濤,《太陽能電池元件導論─材料、元件、製程、系統》,全威圖
書有限公司 (2008)
[4] D. E. Carlson, C. R. Wronski,“Amorphous silicon solar cell”, Applied Physics Letters, 28/11, 671-673 (1973).
[5] R. C. Chittick, J. M. Alexander, H. F. Sterling,“The Preparation and
Properties of Amorphous Silicon”, J. Electrochem. Soc., 116/1, 77-81
(1969).
[6] W. E. Spear, P. G. Le Comber,“Substitutional doping of amorphous
silicon”, Solid State Communications, 17, 1193-1196 (1975).
[7] R. A. Street,“Hydrogenated Amorphous Silicon”, Cambridge University
Press (1991).
[8] S. O. Kasap,“Principles of Electronic Materials and Devices”,
McGraw-Hill (2005).
[9] M. Stutzmann, W. B. Jackson, C. C. Tsai,“Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study”, Physical Review B, 32/1, 23-47 (1985).
[10] N. F. Mott,“Electrons in disordered structures”, Adv. Phys., 16, 49-144 (1967).
[11] D. E. Carlson, Journal of Non-Crystalline Solids 35-36 (1980) 707-717.
[12] T. D. Moustakas, R. Friedman,“Amorphous silicon PIN solar cells fabricated”, Appl. Phys. Lett., 40, 515-517 (1982).
[13] M. H. Brodsky, J. J. Cuomo,“Doping of Sputtered Amorphous Semiconductors”, IBM Technical Disclosure Bulletin, 19, 4802 (1977).
[14] M. M. de Lima Jr., F. C. Marques,“On the doping mechanism of boron-doped hydrogenated amorphous silicon deposited by rf-co-sputtering”, Journal of Non-Crystalline Solids, 299-302,pg. 605-609 (2002).
[15] A. Tabata, J. Nakano, T. Misutani, K. Fukaya,“Preparation of B-Doped Micorcrystalline Silicon Thin Films by RF Magnetron Sputtering”, IEEE 4th WCPEC, 1639-1641 (2006).
[16] T. D. Moustakas, H. P. Maruska,“Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered fpom boron and phosphorous heavily doped targets”, United States Patent, 4508609 (1985).
[17] T. Sawada, N. Terada, S. Tsuge, T. Baba, T. Takahama, K. Wakisaka,
S. Tsuda, S. Nakano,“High-efficiency a-Si:H/c-Si heterojunction solar cells”, The First WCPEC, 1219 (1994), Hawaii.
[18] Mikio Taguchi¬, Kunihiro Kawamoto, Sadaji Tsuge, Toshiaki Baba, Hitoshi Sakata, Masashi Morizane, Kenji Uchihashi, Noboru Nakamura, Seiichi Kiyama and OsamuOota,“HITTM Cells─High-Efficiency Crystalline Si Cells with Novel Structure”, PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 8, 503-513 (2000).
[19] Kwang-sun Ji, Junghoon Choi, Hyunjin Yang, Heon-Min Lee, Donghwan
Kim,“A study of crystallinity in amorphous Si thin films for silicon heterojunction solar cells”, Solar Energy Materials & Solar Cells, 95, 203-206 (2011).
[20] D. L. Staebler, C. R. Wronski,“Reversible conductivity changes in
discharge‐produced amorphous Si”, Appl. Phys. Lett., 31, 292 (1977).
[21] B. Jagannathan, W. A. Anderson, J. Coleman,“Amorphous silicon/p-type crystalline silicon heterojunction solar cells”, Solar Energy Materials and Solar Cells, 46, 289-310 (1997).
[22] 李正中,《薄膜光學與鍍膜技術》,第六版,藝軒圖書出版社 (2009)
[23] 莊達人,《VLSI製造技術》,高立圖書有限公司 (2005)
[24] 田民波,《薄膜技術與薄膜材料》,五南圖書出版股份有限公司 (2007)
[25] 國家實驗研究院,《真空技術與應用》, 儀器科技研究中心出版 (2008)
[26] 民波,《薄膜技術與薄膜材料》, 五南圖書出版有限公司(2007)
[27] S. O. Kasap,“Optoelectronics and Photonics: Principles and Practices”, Prentice-Hall (2001).
[28] Donald A. Neamen,“Semiconductor Physics and Devices”, McGraw-Hill (2003).
[29] 莊嘉琛,《太陽能工程-太陽電池篇》,全華圖書股份有限公司 (2008)
[30] S. J. Fonash,“SOLAR CELL DEVICE PHYSICS”, Elsevier Inc. (2010).
[31] Ben G. Streetman, Sanjay Kumar Banerjee,“SOLID STATE ELECTRONIC DEVICES”, Pearson Prentice-Hall (2009).
[32] R. W. Collins, C. Y. Huang,“Optical properties of amorphous multilayer structures”, Physical Review B, vol. 34, issue 4, 2910-2913 (1986).
[33] Ruud E. I. Schropp, Miro Zeman,“Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology”, Kluwer Academic (1998).