跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許峰誠
Feng-Cheng Hsu
論文名稱: 以射頻濺鍍製作異質接面矽太陽能電池之研究
Research on the Heterojunction Silicon Solar Cell using Radio-frequency Sputtering
指導教授: 李正中
Cheng-Chung Lee
陳昇暉
Sheng-Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 60
中文關鍵詞: 異質接面非晶矽射頻濺鍍太陽能電池
外文關鍵詞: heterojunction, amorphous silicon, Radio-frequency Sputtering, solar cell
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如今產業上的太陽能電池發展多以矽晶圓為主要材料,因為矽晶圓本身材料較貴,且在矽晶圓上產生PN接面 (PN junction) 多是利用離子佈植或雜質擴散的方式,這兩種方式皆是高溫製程,相對的製程成本較高,是以本研究希望以沉積薄膜的方式,在矽晶圓上覆蓋相對摻雜特性的含氫非晶矽薄膜完成異質的PN接面。
    因此企圖找出高摻雜濃度 (高導電率) 且低吸收係數的P型含氫非晶矽薄膜,是本研究前半段的目的,因為高導電率、高摻雜的薄膜是較適合應用於製作異質接面太陽能電池。而後半段的目的則是希望對元件做優化的動作,不論是薄膜或基板厚度、半導體─半導體或金屬─半導體接面都是需要被探討並改善的地方,研究中也將針對部分作分析與探討。
    實驗中以射頻磁控濺鍍法沉積的P-type a-Si:H薄膜,經過添加硼顆粒於濺鍍源、調變氫氣與氬氣分壓比例和快速熱退火處理後,已具備有高導電率的特性,將其沉積在N-type c-Si基板上,並完成異質接面太陽電池的製作。
    研究與分析完本實驗自製的太陽能電池,得到一有1.9%轉換效率的異直接面太陽能電池,其開路電壓VOC約為0.5 V,短路電流密度JSC約為9.6 mA/cm2,填充因子FF約為39.7%。


    Silicon wafer is the main material for silicon solar-cell industry. However, to generate a silicon P-N junction solar cell, the material cost and the high-temperature process are expensive. In this study, we aim the deposition of the hydrogenated amorphous silicon (a-Si:H) thin film on the silicon wafer to generate the heterojunction silicon solar cell.
    The high doping concentration (high conductivity) and the low absorption coefficient are the important parameters for the P-type a-Si:H thin film, because of the higher doping of the a-Si:H thin film can achieve the higher conversion efficiency of the heterojunction solar cell. We also optimized the thicknesses of the a-Si:H thin film and the substrate wafer to improve the conversion efficiency. Besides, the interfaces of the semiconductor ─ semiconductor and metal ─ semiconductor have been analyzed explored to improve the performance of the solar cells.
    The a-Si:H heterojunction solar cells have been fabricated using radio-frequency magnetron sputtering to deposit a P-type a-Si: H film on the N-type Si wafer. The sputtering target is a bulk P-type Si with boron grains on it. We modulated the hydrogen and argon partial pressure ratio and the rapid thermal annealing to control the quality of the P-type a-Si:H thin film. The results show the P-type a-Si:H thin film behaved highly conductive.
    After depositing the P-type a-Si:H thin film on the N-type Si substrate to form the heterojunction solar cell, the conversion efficiency of the solar cell is 1.9%, the open circuit voltage VOC is about 0.5 V, the short-circuit current density JSC is about 9.6 mA/cm2 and fill factor FF is about 39.7% .

    中文摘要 I ABSTRACT II 誌謝 III 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池種類 3 1-3 P-type含氫非晶矽薄膜 (P-type a-Si:H) 5 1-3-1 含氫非晶矽薄膜 5 1-3-2 P-type摻雜原理 7 1-4 文獻回顧 8 1-4-1 利用濺鍍法沉積P-type非晶矽薄膜 8 1-4-2 異質接面 (a-Si/c-Si) 太陽能電池發展 10 1-5 研究動機與目的 10 第二章 基本理論 12 2-1 物理氣相沉積法 (Physical Vapor Deposition, PVD) 12 2-1-1 電漿原理 12 2-1-2 射頻磁控濺鍍原理 14 2-2 太陽能電池的發電原理 16 2-3 異質接面太陽能電池 20 2-3-1 異質接面 (Heterojunction) 20 2-3-2 金屬─半導體接面 22 第三章 實驗設備與分析儀器 24 3-1製程設備 24 3-2 P a-Si:H薄膜量測與分析儀器 25 3-2-1 厚度量測 25 3-2-2 吸收係數與半導體能隙量測 25 3-2-3 暗導電率量測 27 3-2-4 活化能 (activation energy, Ea) 量測 29 3-3太陽能電池轉換效率量測儀器 30 第四章 P-TYPE A-SI:H薄膜製作與分析 31 4-1 P a-Si:H製作流程 31 4-2 實驗參數與設計 33 4-3 摻雜濃度對薄膜的影響 37 4-4 製程壓力對薄膜的影響 40 4-5熱退火對薄膜的影響 41 第五章 HETEROJUNCTION SOLAR CELL製作與分析 46 5-1 Heterojunction Solar Cell製作流程 46 5-2 實驗參數與設計 47 5-3 薄膜 (P a-Si:H) 厚度對元件的影響 50 5-4熱退火處理對元件的影響 52 5-5 基板 (N c-Si) 厚度對元件的影響 54 5-6 背電極歐姆接觸對元件的影響 55 第六章 結論 57 參考文獻 58

    [1] L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, R. Martins,“Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell”, Solar Energy Mater. Solar Cells, 87/1-4, 349-355 (2005).
    [2] 黃冠禎,《太陽能的發展與應用》, 中山工商 (2008)
    [3] 顧鴻濤,《太陽能電池元件導論─材料、元件、製程、系統》,全威圖
    書有限公司 (2008)
    [4] D. E. Carlson, C. R. Wronski,“Amorphous silicon solar cell”, Applied Physics Letters, 28/11, 671-673 (1973).
    [5] R. C. Chittick, J. M. Alexander, H. F. Sterling,“The Preparation and
    Properties of Amorphous Silicon”, J. Electrochem. Soc., 116/1, 77-81
    (1969).
    [6] W. E. Spear, P. G. Le Comber,“Substitutional doping of amorphous
    silicon”, Solid State Communications, 17, 1193-1196 (1975).
    [7] R. A. Street,“Hydrogenated Amorphous Silicon”, Cambridge University
    Press (1991).
    [8] S. O. Kasap,“Principles of Electronic Materials and Devices”,
    McGraw-Hill (2005).
    [9] M. Stutzmann, W. B. Jackson, C. C. Tsai,“Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study”, Physical Review B, 32/1, 23-47 (1985).
    [10] N. F. Mott,“Electrons in disordered structures”, Adv. Phys., 16, 49-144 (1967).
    [11] D. E. Carlson, Journal of Non-Crystalline Solids 35-36 (1980) 707-717.
    [12] T. D. Moustakas, R. Friedman,“Amorphous silicon PIN solar cells fabricated”, Appl. Phys. Lett., 40, 515-517 (1982).
    [13] M. H. Brodsky, J. J. Cuomo,“Doping of Sputtered Amorphous Semiconductors”, IBM Technical Disclosure Bulletin, 19, 4802 (1977).
    [14] M. M. de Lima Jr., F. C. Marques,“On the doping mechanism of boron-doped hydrogenated amorphous silicon deposited by rf-co-sputtering”, Journal of Non-Crystalline Solids, 299-302,pg. 605-609 (2002).
    [15] A. Tabata, J. Nakano, T. Misutani, K. Fukaya,“Preparation of B-Doped Micorcrystalline Silicon Thin Films by RF Magnetron Sputtering”, IEEE 4th WCPEC, 1639-1641 (2006).
    [16] T. D. Moustakas, H. P. Maruska,“Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered fpom boron and phosphorous heavily doped targets”, United States Patent, 4508609 (1985).
    [17] T. Sawada, N. Terada, S. Tsuge, T. Baba, T. Takahama, K. Wakisaka,
    S. Tsuda, S. Nakano,“High-efficiency a-Si:H/c-Si heterojunction solar cells”, The First WCPEC, 1219 (1994), Hawaii.
    [18] Mikio Taguchi¬, Kunihiro Kawamoto, Sadaji Tsuge, Toshiaki Baba, Hitoshi Sakata, Masashi Morizane, Kenji Uchihashi, Noboru Nakamura, Seiichi Kiyama and OsamuOota,“HITTM Cells─High-Efficiency Crystalline Si Cells with Novel Structure”, PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 8, 503-513 (2000).
    [19] Kwang-sun Ji, Junghoon Choi, Hyunjin Yang, Heon-Min Lee, Donghwan
    Kim,“A study of crystallinity in amorphous Si thin films for silicon heterojunction solar cells”, Solar Energy Materials & Solar Cells, 95, 203-206 (2011).
    [20] D. L. Staebler, C. R. Wronski,“Reversible conductivity changes in
    discharge‐produced amorphous Si”, Appl. Phys. Lett., 31, 292 (1977).
    [21] B. Jagannathan, W. A. Anderson, J. Coleman,“Amorphous silicon/p-type crystalline silicon heterojunction solar cells”, Solar Energy Materials and Solar Cells, 46, 289-310 (1997).
    [22] 李正中,《薄膜光學與鍍膜技術》,第六版,藝軒圖書出版社 (2009)
    [23] 莊達人,《VLSI製造技術》,高立圖書有限公司 (2005)
    [24] 田民波,《薄膜技術與薄膜材料》,五南圖書出版股份有限公司 (2007)
    [25] 國家實驗研究院,《真空技術與應用》, 儀器科技研究中心出版 (2008)
    [26] 民波,《薄膜技術與薄膜材料》, 五南圖書出版有限公司(2007)
    [27] S. O. Kasap,“Optoelectronics and Photonics: Principles and Practices”, Prentice-Hall (2001).
    [28] Donald A. Neamen,“Semiconductor Physics and Devices”, McGraw-Hill (2003).
    [29] 莊嘉琛,《太陽能工程-太陽電池篇》,全華圖書股份有限公司 (2008)
    [30] S. J. Fonash,“SOLAR CELL DEVICE PHYSICS”, Elsevier Inc. (2010).
    [31] Ben G. Streetman, Sanjay Kumar Banerjee,“SOLID STATE ELECTRONIC DEVICES”, Pearson Prentice-Hall (2009).
    [32] R. W. Collins, C. Y. Huang,“Optical properties of amorphous multilayer structures”, Physical Review B, vol. 34, issue 4, 2910-2913 (1986).
    [33] Ruud E. I. Schropp, Miro Zeman,“Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology”, Kluwer Academic (1998).

    QR CODE
    :::