跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許毓樺
Yu-Hua Hsu
論文名稱: 氮化硼在(100)矽基板上的磊晶成長與特性分析
Growth and Characterization of Boron Nitride on Si(100) Substrates
指導教授: 賴昆佑
Kun-Yu Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 50
中文關鍵詞: 氮化硼
外文關鍵詞: Boron Nitride
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用有機金屬化學氣相沉積法(Metal-Organic Chemical Vapor Deposition,
    MOCVD),於高阻矽基板 Si(100) 上成長氮化硼(Boron Nitride, BN)薄膜,並探討不
    同成長模式對其結構與電性表現之影響。成長模式主要分為連續氣流供應(Continuous
    Flow, CF)與脈衝氣流供應(Pulsed Flow, PF),藉由控制氣體進入腔體的時序與流量,
    調控BN薄膜在異質接面上的成核與堆疊機制。
    結構分析方面,透過穿透式電子顯微鏡(TEM)、 X-ray 吸收光譜(XAS)與傅立葉轉換
    紅外光譜(FTIR)等儀器,我們發現BN在 PF 模式下易形成亂層結構(turbostratic BN,
    t-BN),而 CF 模式則傾向形成有序堆疊的六方結構 (hexagonal BN, h-BN)。t-BN與 Si
    接面處具備較強的能帶偏折與界面重建能力,有利於二維電洞氣(2D Hole Gas, 2DHG)
    的形成。根據低溫霍爾量測的結果,以PF成長的BN呈現較穩定的2DHG濃度及遷移
    率,在 13K ~ 300K 的溫度範圍內,2DHG 的濃度及遷移率維持在 ~ 10¹⁵ cm⁻²、 ~50
    cm²/V·s,並具備不隨溫度改變的遷移率,顯示其導電特性可能由介面載子累積層主導。
    本研究結果證實,透過調控磊晶參數可有效誘發 BN/Si 異質結面之 2DHG 結構,對未
    來發展高性能 P-channel 元件與氮化物異質整合技術具潛力,並提供後續磊晶製程與材
    料工程之重要參考依據。


    In this study, boron nitride (BN) thin films were grown on high-resistivity Si(100) substrates
    using metal-organic chemical vapor deposition (MOCVD). The structural and electrical
    properties of BN films under different growth conditions were systematically investigated.
    Two precursor supply modes—continuous flow (CF) and pulsed flow (PF)—were compared,
    with gas injection timing and flow rate modulation employed to control the nucleation and
    stacking behavior of BN films at the heterointerface.
    Structural analyses using transmission electron microscopy (TEM), X-ray absorption
    spectroscopy (XAS), and Fourier-transform infrared spectroscopy (FTIR) confirmed that PF
    growth tends to promote the formation of turbostratic BN (t-BN), while CF results in the
    formation of well-ordered hexagonal BN (h-BN). The t-BN structure, particularly at the
    BN/Si interface, exhibits significant band bending and interface reconstruction effects, which
    are favorable for the formation of a two-dimensional hole gas (2DHG).
    Further investigation via low-temperature Hall measurements revealed that PF-grown samples
    exhibited high and thermally stable hole concentrations on the order of 10¹⁵ cm⁻².
    Additionally, the hole mobility reached up to 51 cm²/V·s at room temperature and showed
    minimal temperature dependence, suggesting that the transport characteristics are dominated
    by an interface-accumulated carrier layer rather than thermally activated bulk conduction.
    These results demonstrate that by precisely tuning the epitaxial growth parameters, it is
    possible to effectively induce a 2DHG structure at the BN/Si heterointerface. This finding
    provides a promising pathway for developing high-performance p-channel devices and
    advancing heterointegration of BN-based materials, offering valuable guidance for future
    epitaxy and materials engineering research.

    論文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 緒論 1 1.1 前言 1 1.2 p channel MOSFET遇到的瓶頸與狀況 2 1.3 BN的優點和良好的熱導性 4 1.3.1氮化硼的結構型態介紹 5 1.3.2 BN/Si 結構相較於 GaN/AlN 系統之潛在優勢 8 1.4 研究動機與論文架構 9 第二章 實驗製程、方法與儀器 10 2.1實驗流程 10 2.2 有機金屬沉積法 11 2.3 X-ray吸收光譜繞射儀 13 2.4 霍爾量測 15 2.5 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 17 2.6傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectroscopy) 18 第三章 結果分析與討論 19 3.1 Continuous flow和 Pulsed flow的TEM比較 19 3.2 以X-ray吸收光譜繞射儀觀測 21 3.3 傅立葉轉換紅外光譜分析(FTIR) 23 3.4 模擬結果 25 3.5 導電度之電洞訊號 27 3.5.1文獻比較 33 3.6 BN照片 35 第四章 結論與未來展望 36 第五章 參考文獻 38

    [1] Olovsson, W., & Magnuson, M. (2022). Rhombohedral and turbostratic boron nitride
    polytypes investigated by x-ray absorption spectroscopy. The Journal of Physical Chemistry
    C, 126(49), 21101-21108.
    [2] Chen, Y. H., Encomendero, J., Savant, C., Protasenko, V., Xing, H. G., & Jena, D. (2024).
    Electron mobility enhancement by electric field engineering of AlN/GaN/AlN quantum-well
    HEMTs on single-crystal AlN substrates. Applied Physics Letters, 124(15).
    [3] Chaudhuri, R., Zhang, Z., Xing, H. G., & Jena, D. (2022). Very High Density (> 1014 cm−
    2) Polarization‐Induced 2D Hole Gases Observed in Undoped Pseudomorphic InGaN/AlN
    Heterostructures. Advanced Electronic Materials, 8(5), 2101120.
    [4] Raj, A., Krishna, A., Hatui, N., Gupta, C., Jang, R., Keller, S., & Mishra, U. K. (2020).
    Demonstration of a GaN/AlGaN superlattice-based p-channel FinFET with high ON-current.
    IEEE Electron Device Letters, 41(2), 220-223.
    [5] Chaudhuri, R., Bader, S. J., Chen, Z., Muller, D. A., Xing, H. G., & Jena, D. (2019). A
    polarization-induced 2D hole gas in undoped gallium nitride quantum
    wells. Science, 365(6460), 1454-1457.
    [6] Bader, S. J., Chaudhuri, R., Nomoto, K., Hickman, A., Chen, Z., Then, H. W., ... & Jena,
    D. (2018). Gate-recessed E-mode p-channel HFET with high on-current based on GaN/AlN
    2D hole gas. IEEE Electron Device Letters, 39(12), 1848-1851.
    [7] Chu, R., Cao, Y., Chen, M., Li, R., & Zehnder, D. (2016). An experimental demonstration
    of GaN CMOS technology. IEEE Electron Device Letters, 37(3), 269-271.
    [8] Reuters, B., Hahn, H., Pooth, A., Holländer, B., Breuer, U., Heuken, M., ... & Vescan, A.
    (2014). Fabrication of p-channel heterostructure field effect transistors with polarization
    induced two-dimensional hole gases at metal–polar GaN/AlInGaN interfaces. Journal of
    Physics D: Applied Physics, 47(17), 175103.
    [9] Hahn, H., Reuters, B., Pooth, A., Noculak, A., Kalisch, H., & Vescan, A. (2013). First
    small-signal data of GaN-based p-channel heterostructure field effect transistors. Japanese
    Journal of Applied Physics, 52(12R), 128001
    [10] Nakajima, A., Sumida, Y., Dhyani, M. H., Kawai, H., & Narayanan, E. S. (2010). High
    density two-dimensional hole gas induced by negative polarization at GaN/AlGaN
    heterointerface. Applied physics express, 3(12), 121004.
    [11] Shatalov, M., Simin, G., Zhang, J., Adivarahan, V., Koudymov, A., Pachipulusu, R., &
    Khan, M. A. (2002). GaN/AlGaN p-channel inverted heterostructure JFET. IEEE Electron
    Device Letters, 23(8), 452-454.
    [12]https://labs.wsu.edu/mccloy/easyxafs300/#:~:text=EasyXAFS300+.%20The%20easyXAFS300+%20is%20a%20high%2Dpowered%20X%2Dray,synchrotron%20to%20be%20made
    %20in%20the%20lab.

    QR CODE
    :::