| 研究生: |
李岳青 Yueh-Ching Li |
|---|---|
| 論文名稱: |
利用碳氣凝膠紙對硝酸根離子進行電容去離子之研究 The removal of nitrate via the capacitive deionization using carbon aerogel electrodes |
| 指導教授: |
秦靜如
Ching-Ju Chin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 碳氣凝膠紙 、電容去離子 、電容吸附 、硝酸根離子 |
| 外文關鍵詞: | Capacitance adsorption, carbon aerogel, CDI, nitrate |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水資源問題在最近幾年已經漸漸的受到世界各地的關注,其中在人類生活會影響到的水質問題中,水中含氮物質像是硝酸根離子、亞硝酸根離子、氨氮等物質的減量或去除也將會是個重要的課題;本研究是透過以碳氣凝膠紙當作電極,並利用電容去離子機制去除硝酸根離子,並透過不同外加電壓以及不同的初始硝酸根離子濃度,瞭解外加電壓與離子濃度對碳氣凝膠紙的電容去離子系統有何影響。結果顯示,當初始硝酸根離子濃度為100 ppm且外加電壓從0.8 V上升到1.2 V時,硝酸根離子的電容去離子量(電容吸附和還原與脫附量的總合)從2.30 mg/g上升到5.18 mg/g,這是來自電容吸附量隨電壓提高而提高(0.43 mg/g上升到4.58 mg/g),而硝酸根離子還原與脫附量則沒有明顯變化。當初始硝酸根離子濃度從10 ppm提高到200 ppm且外加電壓為1.1 V或1.2 V時,電容吸附量從1.34 mg/g上升到4.48 mg/g,但當初始硝酸根離子濃度提高為500 ppm時,電容吸附量僅剩下2.62 mg/g。以本系統而言,在低初始濃度(10 ppm)時,去除硝酸根離子的效率可達50.53%。本系統的碳氣凝膠紙經過四次反覆充放電後,第四次的電容吸附量還能有第一次的90.9%左右。
Reduction or removal of nitrate, nitrite, and ammonia in the water are important issues. This study focused on the removal of nitrate via the capacitive deionization using carbon aerogel electrodes. The influences of voltages and initial nitrate concentrations on the removal of nitrate and speciation of nitrogen are investigated. The results showed that the removal amount of nitrate increases from 2.30 mg/g to 5.18 mg/g when the applied voltage increased from 0.8 V to 1.2 V with the initial nitrate concentration of 100 ppm. These removal of nitrate may be contributed from the capacitance adsorption and the reduction of nitrate. The amount of nitrate removed by capacitance adsorption increased from 0.43 mg/g to 4.58 mg/g when the applied voltage increased from 0.8V to 1.2 V. At the meantime, the reduction and desorption nitrate did not affected by applying different voltage. The amount of nitrate removed by capacitance adsorption increased from 1.34 mg/g to 4.48 mg/g when the nitrate concentration increased from 10 ppm to 200 ppm, but decreased to 2.62 mg/g when nitrate concentration increased to 500 ppm. At low nitrate concentration (10 ppm), the removal efficiency reached 50.53%. And the capacitive adsorption ability was about 90.9% after four cycles.
Alikhani, M. and Moghbeli, M. R., "Ion-exchange polyHIPE type membrane for removing nitrate ions: Preparation, characterization, kinetics and adsorption studies", Chemical Engineering Journal, 239, 93-104, (2014).
Anderson, M. A., Cudero, A. L., and Palma, J., "Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?", Electrochimica Acta, 55, 3845-3856, (2010).
Bae, B. U., Jung, Y. H., Han, W. W., and Shin, H. S., "Improved brine recycling during nitrate removal using ion exchange", Water Research, 36, 3330–3340, (2002).
Bosko, M. L., Rodrigues, M. A. S., Ferreira, J. Z., Miró, E. E., and Bernardes, A. M., "Nitrate reduction of brines from water desalination plants by membrane electrolysis", Journal of Membrane Science, 451, 276-284, (2014).
Boumediene, M. and Achour, D., "Denitrification of the underground waters by specific resin exchange of ion", Desalination, 168, 187-194, (2004).
Chen, Z., Song, C., Sun, X., Guo, H., and Zhu, G., "Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes", Desalination, 267, 239-243, (2011).
Elmldaoui, A., Elhannouni, F., Sahli, M. A. M., Chay, L., Elabbassi, H., Hafsi, M., and Largeteau, D., "Pollution of nitrate in Moroccan ground water removal by electrodialysis", Desalination, 136, 325-332, (2001).
Emets, V. V. and Damaskin, B. B., "Effect of metal nature on specific adsorption of Cl−, Br−, and I− ions from N-methylformamide solutions", Journal of Electroanalytical Chemistry, 712, 62-73, (2014).
Farmer, J. C., Bahowick, S. M., Harrar, J. E., Fix, D. V., Martinelli, R. E., Vu, A. K., and Carroll, K. L., "Electrosorption of Chromium Ions on Carbon Aerogel Electrodes as a Means of Remediating Ground Water", Lawrence Livermore National Laboratory, (1996).
Farmer, J. C., Mack, G. V., and Fix, D. V., "The Use of Carbon Aerogel Electrodes for Deionizing Water and Treating Aqueous Process Wastes", Lawrence Livermore National Laboratory, (1996).
Fischer, U., Saliger, R., Bock, V., Petricevic, R., and Fricke, J., "Carbon Aerogels as Electrode Material in Supercapacitors", Journal of Porous Materials, 4, 281-285, (1997).
Fung, A. W. P., Wang, Z. H., Lu, K., Dresselhaus, M. S., and Pekala, R. W., "Characterization of carbon aerogels by transport measurements", Journal of Materials Research, 8, 1875-1885, (1992).
Gabelich, C. J., Tran, T. D., and Suffet, I. H. M., "Electrosorption of Inorganic Salts from Aqueous Solution Using Carbon Aerogels", Environmental Science & Technology, 36, 3010-3019, (2002).
Johnson, A. M. and Newman, J., "Desalting by Means of Porous Carbon Electrodes", Electrochemical Technology, 118, 510-517, (1971).
Kitazumi, Y., Shirai, O., Yamamoto, M., and Kano, K., "Numerical simulation of diffuse double layer around microporous electrodes based on the Poisson–Boltzmann equation", Electrochimica Acta, 112, 171-175, (2013).
Kim, Y. J. and Choi J. H., "Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization", Water Research, 46, 6033-6039, (2012).
Kurzweil, P., "Electrochemical Double-Layer Capacitors Carbon Materials", Capacitors, 1, 634-648, (2009).
Li, J., Wang, X., Huang, Q., Gamboa, S., and Sebastian, P. J., "Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor", Journal of Power Sources, 158, 784-788, (2006).
Lin, C., Ritter, J. A., and Popov, B. N., "Correlation of Double-Layer Capacitance with the Pore Structure of Sol-Gel Derived Carbon Xerogels", Journal of The Electrochemical Society, 146, 3638-3643, (1999).
Luk, G. K. and Au-Yeung, W. C., "Experimental investigation on the chemical reduction of nitrate from groundwater", Advances in Environmental Research, 6, 441-453, (2002).
Lv, Y., Wang, Y., Shan, M., Shen, X., and Su, Y., "Denitrification of coking wastewater with micro-electrolysis", Journal of Environmental Sciences, 23, 128-131, (2011).
Moreno-Castilla, C. and Maldonado-Hódar, F. J., "Carbon aerogels for catalysis applications: An overview", Carbon, 43, 455-465, (2005).
Murphy, A. P., "Chemical removal of nitrate from water", Nature, 350, 223-225, (1991).
Schoeman, J. J. and Steyn, A., "Nitrate removal with reverse osmosis in a rural area in South Africa", Desalination, 155, 15-26, (2003).
Sharma, K., Mayes, R. T., Kiggans Jr, J. O., Yiacoumi, S., Gabitto, J., DePaoli, D. W., Dai, S., and Tsouris, C., "Influence of temperature on the electrosorption of ions from aqueous solutions using mesoporous carbon materials", Separation and Purification Technology, 116, 206-213, (2013).
Soares, M. I. M., "Biological denitrification of groundwater", Water, Air, and Soil Pollution, 123, 183-193, (2000).
Tamon, H., Ishizaka, H., Mikami, M., and Okazaki, M., "Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde", Carbon, 35, 791-796, (1997).
Trasatti, S. and Parsons, R., "Interphases in systems of conducting phases", Pure and Applied Chemistry, 58, 437-454, (2009).
Valle-Delgado, J. J., "Double layer forces and DLVO theory", Aalto University School of Chemical Technology, (2013).
Wang, H. J., Dong, W. Y., Li, T., and Liu, T. Z., "Enhanced synergistic denitrification and chemical precipitation in a modified BAF process by using Fe2+", Bioresour Technolgy, 151, 258-264, (2014).
Xu, P., Drewes, J. E., Heil, D., and Wang, G., "Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology", Water Research, 42, 2605-2617, (2008).
Yang, K. L., Yiacoumi, S., and Tsouris, C., "Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry", Journal of Electroanalytical Chemistry, 540, 159-167, (2003).
Ying, T. Y., Yang, K. L., Yiacoumi, S., and Tsouris, C., "Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel", Journal of Colloid Interface Science, 250, 18-27, (2002).
Zhang, L. L. and Zhao, X. S., "Carbon-based materials as supercapacitor electrodes", Chemical Society Reviews, 38, 2520-2531, (2009).
Zhang, S. Q., Wang, J., Shen, J., Deng, Z. S., Lai, Z. Q., Zhou, B., Attia, S. M., and Chen, L. Y., "The investigation of the adsorption character of carbon aerogels", NanoStructured Materials, 11, 375-381, (1999).
林鳶青, "檸檬酸鹽/Fe(Ⅲ)、矽酸鹽/Fe(Ⅲ)合成氧化鐵吸附鎘之研究", 輔英科技大學環境工程與科學系碩士班碩士論文, (2006).
徐以玲, "水中銅、鎘金屬離子於奈米碳管上之吸附研究", 國立雲林科技大學環境與安全衛生工程研究所碩士論文, (2006).
游絢博, "陽極單軸間歇運動下之直流、脈衝微電析鎳", 國立中央大學機械工程研究所碩士論文, (2000).
蔣世安 and 林高州, "工業廢水除氮處理方式探討及經驗分享", (2012).
鄭喬薇, "碳氣凝膠電容吸附水中重金屬", 國立中央大學環境工程研究所碩士論文, (2007).
廖仲洲, "利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討",國立中央大學環境工程研究所碩士論文, (2006)