跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許毓蘭
Yu-Lan Hsu
論文名稱: 液滴在完全潤濕的磺基甜菜鹼表面之潤濕現象:自釘扎與無遲滯
Self-pinning and Hysteresis-free Motion on Total Wetting Sulfobetaine Silane Surfaces
指導教授: 曹恆光
Heng-Kwong Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 101
中文關鍵詞: 自釘扎無接觸角遲滯磺基甜菜鹼矽烷
外文關鍵詞: Self-pinning, Hysteresis-free, Sulfobetaine Silane
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗將磺基甜菜鹼矽烷(Sulfobetaine silane, SBSi)經水解縮合修飾至玻璃上而成一雙離子型表面。水滴在此基材上其接觸線會不斷向外擴張,呈現完全潤濕的行為。但若在水中添加微量的溶質時(小分子及高分子),將會發生自釘扎現象,而使完全潤濕現象消失。此時,液滴的接觸線停止向外擴展並呈現ㄧ較低的接觸角。然而,此自釘扎現象在受重力驅動後將會失效,將含溶質之液滴置於傾斜的SBSi表面上並觀察在重力驅動下液滴的運動行為,可以發現對於大部分的溶質如鹽或高分子,在傾斜角約為5o時,5 l液滴的下端接觸線就會開始向下方滑移,且其尾端會立刻有溶質析出。利用紫外光光譜儀監控滑過表面後液滴的濃度變化,顯示液滴的濃度快速增加,可應用於增濃的相關領域。特別的是,當溶質的分子結構中含有環氧乙烷(Ethylene oxide, EO) 官能基時,如二乙二醇單丁醚(Diethyleneglycolmonobutylether ,BDG)與聚乙二醇(Polyethylene glycol, PEG),液滴在SBSi 表面上會呈現接近無接觸角遲滯的特殊行為,即便於水平表面上,液滴亦會進行不規則的隨機運動,其原因可歸咎於液滴表面不均勻的蒸發所致。此外,在傾斜角僅1o的傾斜表面上,5 l液滴即會向下滑動,過程中液滴形狀保持約略圓形且不會有溶質析出。並且觀察液滴滑動速度與表面傾斜角之關係,可以發現其運動速度與傾斜角度呈線性關係,再次驗證其近乎不存在的接觸角遲滯,並具有於潤滑相關領域的發展潛力。


    The zwitterionic surface is fabricated by grafting sulfobetaine silane (SBSi) on a glass slide. The contact line of a water drop on the SBSi surface spreads continuously, corresponding to total wetting. The addition of 1wt% solutes such as salt or polymer leads to self-pinning of a water drop with small contact angles. The self-pinning behavior will disappear when the SBSi surface is tilted at 5o. Typically, the contact line at the lower-side of the drop with the volume 5 l moves downward. During the gravity-driven spreading, the solutes in the solid state soon appear in the trail of the drop. Using Ultraviolet Spectrometer(UV-Vis) to monitor changes in concentration of the droplets, showing a rapid increase in the concentration of droplets. It can be used for concentrated applications. However, when the solutes possess ethylene oxide (EO) groups such as diethyleneglycolmonobutylether and polyethyleneglycol, the drop on the SBSi surfaces exhibits a hysteresis-free behavior. The drop can move freely on the SBSi surfaces because of the uneven evaporation. In addition, it can slide easily even though the tilted angle is just 1o. During the drop sliding, the shape of the droplet retains approximately circular and there is no solute residue. The velocity of droplets and tilted angles are in linear correlation. Verifying that there is almost no contact angle hysteresis again. Our experimental results reveal that the SBSi surface may be used for lubrication applications.

    摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 xi 1 第一章 緒論 1 1-1 前言 1 1-2 研究目的與動機 3 2 第二章 基本原理及文獻回顧 5 2-1 潤濕現象(Wetting Phenomena) 5 2-1-1 楊氏方程式(Young’s equation) 5 2-1-2 溫佐方程式(Wenzel’s equation) 8 2-1-3 卡西方程式(Cassie's equation) 10 2-2 接觸角遲滯 11 2-2-1 接觸角遲滯定義 11 2-2-2 接觸角遲滯成因 12 2-3 咖啡圈環效應 14 2-4 完全潤濕 (Total wetting) 16 2-4-1 低界面張力液體(LG)-矽油 16 2-4-2 Tanner’s Law 17 2-4-3 表面能(SG) 19 2-4-4 雙離子分子 21 2-5 文獻回顧 25 3 第三章 實驗 34 3-1 實驗藥品 34 3-2 實驗儀器 35 3-3 儀器原理 36 3-3-1 巨觀放大顯微測量系統 36 3-3-2 光學顯微鏡 36 3-3-3 影像式接觸角量測儀 38 3-3-4 紫外光-可見光光譜儀 40 3-4 實驗方法與步驟 41 3-4-1 磺基甜菜鹼矽烷合成(SBSi) 41 3-4-2 雙離子型磺基甜菜鹼分子自組裝膜之製備 42 3-4-3 液滴面積及質心分析 43 3-4-4 液滴接觸角之估算(球帽公式) 44 3-4-5 Trypan blue (TB)水溶液濃度分析 46 4 第四章 溶質誘發之自釘扎與重力驅動之完全潤濕現象 47 4-1 添加溶質之溶液潤濕行為 47 4-1-1 小分子與高分子溶質 48 4-2 重力驅動之完全潤濕行為 53 4-2-1 含溶質之液滴於一般基材之潤溼行為 53 4-2-2 含溶質之液滴於SBSi表面之潤溼行為 53 4-2-3 重力驅動完全潤濕速度之探討 59 4-2-4 重力驅動完全潤濕之液滴增濃現象及其應用 62 5 第五章 溶質誘發之無遲滯運動行為 66 5-1 含Ethylene Oxide液滴之無遲滯運動 66 5-1-1 溶質濃度對液滴運動的影響 68 5-2 液滴在斜板上之潤濕行為 70 5-2-1 液滴於一般傾斜表面上之運動行為 70 5-2-2 含EO之液滴於傾斜SBSi表面上之運動行為 71 5-2-3 含EO之液滴於傾斜SBSi表面上摩擦力探討 74 6 第六章 結論 79 7 第七章 參考文獻 80

    [1] D. J. Miller, S. Kasemset, L. Wang, D. R. Paul and B.D. Freeman, “ Constant Flux Crossflow Filtration Evaluation of Surface-Modified Fouling-Resistant Membranes ” Journal of Membrane Science, 452, 171−183 (2014).
    [2] J. P. Nicot and I. J. Duncan, “ Common Attributes of Hydraulically Fractured Oil and Gas Production and CO2 Geological Sequestration”Greenhouse Gases: Science and Technology, 2, 352−368 (2012).
    [3] K. W. Ketkar and A. J. G. Babu, “ An Analysis of Oil Spills from Vessel Traffic Accidents ”, Transportation Research. Part D:Transport and Environment, 2, 35−41 (1997).
    [4] W. Barthlott and C. Neinhuis, “ Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces ”, Planta, 202, 1–8 (1997).
    [5] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, “ Light-Induced Amphiphilic Surfaces ”, Nature, 388, 431–432 (1997).
    [6] X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang and L. Jiang, “ The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography ”, Advanced Materials, 19, 2213−2217 (2007).
    [7] Y. Chen, Y. B. Zhang, L. Shi, J. Li, Y. Xin, T. T. Yang and Z. G. Guo, “ Transparent Superhydrophobic / Superhydrophilic Coatings for Self- Cleaning and Anti-Fogging ”, Applied Physics Letters, 101, 033701− 033704 (2012).
    [8] J. G. Kim, H. J. Choi, K. C. Park, R. E. Cohen, G. H. McKinley and G. Barbastathis, “ Multifunctional Inverted Nanocone Arrays for Non-Wetting, Self-Cleaning Transparent Surface with High Mechanical Robustness ”, Small, 10, 2487−2494 (2014).
    [9] K. Oguri, N. Iwataka, A. Tonegawa, Y. Hirose, K. Takayama and Y. Nishi, “ Misting-Free Diamond Surface Created by Sheet Electron
    Beam Irradiation ”, Journal of Material Research, 16, 553−557 (2001).
    [10] R. L. Leonard, A. Y. Terekhov, C. Thompson, R. A. Erck and J. A. Johnson, “ Antifog Coating for Bronchoscope Lens ”, Surface Engineering, 28, 468−472 (2012).
    [11] B. J. Briscoe and K. P. Galvin, “ The Effect of Surface Fog on the Transmittance of Light ”, Solar Energy, 46, 191−197 (1991).
    [12] H. Lee, M. L. Alcaraz, M. F. Rubner and R. E. Cohen, “ Zwitter-Wettability and Antifogging Coatings with Frost-Resisting Capabilities ”, ACS Nano, 7, 2172−2185 (2013).
    [13] P. S. Brown, O. Atkinson and J. P. S. Badyal, “ Ultrafast Oleophobic-Hydrophilic Switching Surfaces for Antifogging, Self-Cleaning, and Oil-Water Separation ”, ACS Applied Materials and Interfaces, 6, 7504−7511 (2014).
    [14] V. Zorba, X. B. Chen and S. S. Mao, “ Superhydrophilic TiO2 Surface Without Photocatalytic Activation ”, Applied Physics Letter, 96, 093702-093704 (2010).
    [15] Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang,
    Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu and B. Yang, “ Biomimetic Surfaces for High-Performance Optics ”, Advanced Materials, 21, 4731-4734 (2009).
    [16] Y. Takata, S. Hidaka, M. Masuda and T. Ito, “ Pool Boiling on a Superhydrophilic Surface ”, International Journal of Energy Research, 27, 111–119 (2003).
    [17] Z. H. Liu and Y. H. Qiu, “ Critical Heat Flux of Steady Boiling for Water Jet Impingement in Flat Stagnation Zone on Superhydrophilic Surface ”, ASME Journal of Heat Transfer, 128, 726–729 (2006).
    [18] L. Liao, R. Bao and Z. H. Liu, “ Compositive Effects of Orientation and Contact Angle on Critical Heat Flux in Pool Boiling of Water ”, Heat and Mass Transfer, 44, 1447–1453 (2008).
    [19] G. Piret, Y. Coffinier, C. Roux, O. Melnyk and R. Boukherroub “ Biomolecule and Nanoparticle Transfer on Patterned and Heterogeneously Wetted Superhydrophobic Silicon Nanowire Surfaces ”, Langmuir, 24, 1670–1672 (2008).
    [20] E. Galopin, G. Piret, S. Szunerits, Y. Lequette, C. Faille and R. Boukherroub, “ Selective Adhesion of Bacillus Cereus Spores on Heterogeneously Wetted Silicon Nanowires ”, Langmuir, 26, 3479–3484 (2010).
    [21] C. Byon, Y. Nam, S. J. Kim and Y. S. Ju, “ Drag Reduction in Stokes Flows Over Spheres with Nanostructured Superhydrophilic Surfaces ”, Journal of Applied Physics, 107, 066102 (2010).
    [22] K. Hashimoto, H. Irie and A. Fujishima, “ TiO2 Photocatalysis: A Historical Overview and Future Prospects ”, Japanese Journal of Applied Physics, 44, 8269-8285 (2005).
    [23] A. Nayak, H. Liu and G. Belfort, “An Optically Reversible Switching Membrane Surface ”, Angewandte Chemie International Edition, 45, 4094–4098 (2006).
    [24] J. Y. Park, M. H. Acar, A. Akthakul, W. Kuhlman and A. M. Mayes, “ Polysulfone-Graft-poly(ethylene glycol) Graft Copolymers for Surface Modification of Polysulfone Membranes ”, Biomaterials, 27, 856–865 (2006).
    [25] Y. H. Zhao, K. H. Wee and R. Bai, “ Highly Hydrophilic and Low-Protein-Fouling Polypropylene Membrane Prepared by Surface Modification with Sulfobetaine-based Zwitterionic Polymer Through a Combined Surface Polymerization Method ”, Journal of Membrane Science, 362, 326–333 (2010).
    [26] K. T. Huang, S. B. Yeh, and C. J. Huang, “ Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Applications in Antifog, Underwater Self-Cleaning, and Oil-Water Separation ”, ACS Applied Materials & Interfaces, 7, 21021–21029 (2015).
    [27] C. J. Wu, C. J. Huang, S. J. Jiang, Y. J. Sheng and H. K. Tsao, “ Superhydrophilicity and Spontaneous Spreading on Zwitterionic Surfaces: Carboxybetaine and Sulfobetaine ”, RSC Advances, 6, 24827-24834 (2016).
    [28] R. N. Wenzel, “ Resistance of Solid Surfaces to Wetting by Water ”, Industrial and Engineering Chemistry Research, 28, 988-994 (1936).
    [29] A. Cassie and S. Baxter, “ Wettability of Porous Surfaces ”, Transactions of the Faraday Society, 40, 546-551 (1944).
    [30] J. Joanny and P. De Gennes, “ A Model for Contact Angle Hysteresis ”, Jounal of Chemical Physics, 81, 552-562 (1984).
    [31] S. Yamada and J. Israelachvili, “ Friction and Adhesion Hysteresis of Fluorocarbon Surfactant Monolayer-Coated Surfaces Measured With the Surface Forces Apparatus ”, Journal of Physical Chemistry B, 102, 234-244 (1998).
    [32] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, “ Capillary Flows the Cause of Ring Stains From Dried Liquid Drops ”, Nature, 389, 827-829 (1997).
    [33] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, “ Contact line deposits in an evaporating drop ”, Physical Review E, 62, 756-765 (2000).
    [34] X. Shen, C. M. Ho and T. S. Wong, “ Minimal Size of Coffee Ring Structure ”, Journal of Physical Chemistry B, 114, 5269-5274 (2010).
    [35] K. Efimenko, W. E. Wallace and J. Genzer, “ Surface Modification of Sylgard-184 Poly(dimethyl siloxane) Networks by Ultraviolet and
    Ultraviolet/Ozone Treatment ”, Journal of Colloid and Interface Science, 254, 306−315 (2002).
    [36] W. S. Bae, A. J. Convertine, C. L. McCormick and M. W. Urban, “ Effect of Sequential Layer-by-Layer Surface Modifications on the Surface Energy of Plasma-Modified Poly(dimethylsiloxane) ”, Langmuir, 23(2), 667−672 (2007).
    [37] S. Lee and J. Voros, “ An Aqueous-Based Surface Modification of
    Poly(dimethylsiloxane) with Poly(ethylene glycol) to Prevent Biofouling ”, Langmuir, 21(25), 11957−11962 (2005).
    [38] S. Demming, C. Lesche, H. Schmolke, C. P. Klages and S. Büttgenbach, “ Characterization of Long-Term Stability of Hydrophilized PEG-grafted PDMS Within Different Media for Biotechnological and Pharmaceutical Applications ”, Physica Status Solidi (a), 208, 1301−1307 (2011).
    [39] Z. Zhang, X. Feng, Q. Luo and B. F. Liu, “ Environmentally Friendly Surface Modification of PDMS Using PEG Polymer Brush ”, Electrophoresis, 30, 3174−3180 (2009).
    [40] V. Sharma, M. Dhayal, Govind, S. M. Shivaprasad, and S. C. Jain,
    “ Surface Characterization of Plasma-Treated and PEG-Grafted PDMS for Micro Fluidic Applications ”, Vacuum, 81, 1094−1100 (2007).
    [41] N. MacCallum, C. Howell, P. Kim, D. Sun, R. Friedlander, J. Ranisau, O. Ahanotu, J. J. Lin, A. Vena, B. Hatton, T. S. Wong and J. Aizenberg, “ Liquid-Infused Silicone as a Biofouling-Free Medical Material ”, ACS Biomaterial Science and Engineering, 1, 43–51 (2015).
    [42] L. H. Tanner, “ The spreading of Silicone oil Drops on Horizontal Surfaces”, Journal of Physics D: Applied Physics, 12, 1473–1484 (1979).
    [43] F. M. Fowkes, “ Determination of Interfacial Tensions, Contact Angles and Dispersion Forces in Surfacesby Assuming Additivty of Intermolecular Interactions in Surfaces ”, Journal of Physical Chemistry, 66, 382 (1962).
    [44] T. Suzuki and Y. Yamada, “ Dispersion and Polar Component of Specific Surface Free Energy of NaCl(100), KCl(100), and KBr(100) Single Crystal Surface ”, Journal of Crystallization Process and Technology, 5, 43-47 (2015).
    [45] R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama and G. M. Whitesides, “ Zwitterionic SAMs That Resist Nonspecific Adsorption of Protein from Aqueous Buffer ”, Langmuir, 17, 2841-2850 (2001).
    [46] R. S. Kane, P. Deschatelets, and G. M. Whitesides, “ Kosmotropes form the Basis of Protein-Resistant Surfaces ” Langmuir, 19, 2388-2391 (2003).
    [47] K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanabe and N. Nakabayashi, “ Hemocompatibility of Human Whole-Blood on Polymers with a Phospholipid Polar Group and its Mechanism ”, Journal of Biomedical Materials Research, 26, 1543-1552 (1992).
    [48] S. Y. Jiang and Z. Q. Cao, “ Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications ”, Advanced Materials, 22, 920-932 (2010).
    [49] S. B. Yeh, C. S. Chen, W. Y. Chen, and C. J. Huang, “ Modification of Silicone Elastomer with Zwitterionic Silane for Durable Antifouling Properties ”, Langmuir, 30,11386–11393 (2014).
    [50] B. W. Weon and J. H. Je, “ Self-Pinning by Colloids Confined at a Contact Line ”, Physical Review Letters, 110, 028303 (2013).
    [51] G. Petzold, K. Niranjan and J. M. Aguilera, “ Vacuum-Assisted Freeze Concentration of Sucrose Solutions ”, Journal of Food Engineering, 115, 357-361 (2013).
    [52] L. Bocquet and E. Charlaix, “ Nanofluidics, from Bulk to Interfaces ”, Chemical Society Review, 39, 1073−1095 (2010).
    [53] C. Cottin-Bizonne, J. L. Barrat, L. Bocquet and E. Charlaix, “ LowFriction Flows of Liquid at Nanopatterned Interfaces”, Nature Materials, 2, 237−240 (2003).
    [54] Q. Ehlinger, L. Joly and O. Pierre-Louis, “ Giant Slip at LiquidLiquid Interfaces Using Hydrophobic Ball Bearings ”, Physical Review Letter, 110, 104504 (2013).
    [55] R. B. Schoch, J. Han, and P. Renaud, “ Transport Phenomena in Nanofluidics ”, Reviews of Modern Physics, 80, 839−883 (2008).

    QR CODE
    :::