跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅傳鈞
Chung-Jiun Lo
論文名稱: 火炎山土石流監測及逕流引致土石流實驗
指導教授: 周憲德
Hsien-Ter Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 219
中文關鍵詞: 火炎山土石流地聲訊號逕流破壞水流功率
外文關鍵詞: Houyenshan, debris flows, geophone, runoff, stream power
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別於苗栗縣火炎山一號坑中進行土石流現地監測,以及於國立中央大學大型力學實驗館進行逕流引致土石流之顆粒實驗分析。前者透過攝影機影像資料記錄土石流事件之流動歷程,估算礫石型土石流前端部平均速度介於0.4 m/s-1.1 m/s。彙整2016年到2021年間所發生土石流之降雨資料,並歸納出有效累積雨量(前期降雨) (R)與雨場累積雨量(Re)二種參數分別與土石流流動距離(L)皆具有正相關趨勢。三維地聲儀所記錄之地聲訊號,顯示逕流事件頻率範圍為20到90 Hz之間;高含砂水流事件頻率範圍為30到80 Hz之間;地震事件頻率範圍為5 Hz以下。後者顆粒堆積底床之實驗,探討顆粒之流動型態與破壞歷程、顆粒流運動特性、逕流破壞後之堆積體參數以及與水流功率之相關性。供水量與水槽傾斜坡度條件之不同,會造成不同的流動型態。當顆粒堆積底床受到逕流破壞時,隨著坡度與流量條件之增加,即水流功率增加,使水流沖蝕顆粒堆積底床的能力更強、捲增效應更加顯著,讓顆粒流波峰高度於流動過程中呈現遞增之趨勢。


    In this study, we conducted field surveys of debris flows at the Houyenshan of San Yi county, Miaoli, Taiwan, and conducted particle experiments analysis of runoff-induced debris flows in the large-scale mechanics laboratory of National Central University. The former recorded the flow progress of the debris flow events through image data filmed by cameras, and found that the average velocities at the front of the debris flows were between 0.4 m/s-1.1 m/s. We collected the rainfall data of the debris flows occurred from 2016 to 2021, and concluded that the effective accumulated rainfall (including antecedent rainfall) (R) and the accumulated rainfall (Re) of the rain field have a positive correlation with the flow distance (L) of the debris flows. The signals recorded by the three-dimensional geophones showed that the frequency range of runoff events are between 20 and 90 Hz; the frequency range of debris flood events are between 30 and 80 Hz; the frequency range of earthquake events are below 5 Hz. The latter experiments of loose bed explores the granular flow pattern and failure processes, granular flow motion characteristics, accumulation parameters after runoff failures, and the correlations with stream power. The differences between the slope and the discharge conditions of the experimental tilting flume will cause different flow patterns. When the loose bed is fluidized by runoff, the ability of water flow to entrain the loose bed will be stronger as the slope and the discharge increase. The surge of the granular flow shows an increasing trend during the flow process.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 1.3 研究內容與方法 2 1.4 論文架構 3 第二章 文獻回顧 5 2.1 土石流概述 5 2.2 土石流之分類 8 2.3 土石流發生之臨界坡度與臨界流量 8 2.4 土石流流速與量體計算 11 2.5 土石流與降雨量之相關性 12 2.6 土石流地聲訊號 14 第三章 現地土石流監測之研究與分析方法 17 3.1 現地土石流監測系統 17 3.1.1 研究區域 17 3.1.2 現地監測設備 21 3.2 現地土石流監測資料分析方法 28 3.2.1 土石流流動歷程與事件前後地形變化之影像分析 28 3.2.2 土石流前端部平均速度分析 28 3.2.3 降雨量分析 29 3.2.4 地聲訊號與頻譜分析 31 第四章 逕流引致顆粒堆積流體化實驗與分析方法 33 4.1 實驗設備與配置 33 4.2 實驗顆粒之特性 38 4.3 實驗步驟 40 4.4 分析方法 42 4.4.1 顆粒堆積底床破壞與流況分析 42 4.4.2 顆粒流高度變化歷程分析 42 4.4.3 顆粒流波峰之平均速度分析 42 第五章 現地土石流監測之成果分析 47 5.1 土石流流動歷程與事件前後之地形變化 47 5.1.1 2020年05月22日土石流事件 47 5.1.2 2020年05月28日土石流事件 63 5.1.3 2020年05月下旬土石流事件後之地形變化 66 5.1.4 2021年05月30日土石流事件 70 5.1.5 2021年05月31日土石流事件 73 5.1.6 2021年05月下旬土石流事件後之地形變化 76 5.2 礫石型土石流前端部平均速度分析 80 5.2.1 2020年05月22日上游段土石流事件之前端部平均速度 80 5.2.2 2020年05月22日中游段土石流事件之前端部平均速度 82 5.3 降雨量分析 86 5.3.1 火炎山一號坑土石流發生之臨界降雨條件 86 5.3.2 雨量參數與土石流事件流動距離之相關性 95 5.4 地聲訊號與頻譜分析 99 5.4.1 逕流 99 5.4.2 高含砂水流 116 5.4.3 地震 134 第六章 逕流引致顆粒堆積流體化實驗之分析 145 6.1 水流功率(Stream Power) 145 6.2 坡度與流量影響顆粒流動之型態與破壞過程 146 6.3 顆粒流土石流型態之前端部啟動距離 154 6.4 顆粒流斷面高度變化歷程 157 6.5 顆粒流波峰之平均速度 168 6.6 逕流破壞後堆積體參數與單寬水流功率之相關性 174 6.6.1 顆粒堆積體長度、高度參數與單寬水流功率之相關性 174 6.6.2 顆粒堆積體坡度參數與單寬水流功率之相關性 179 6.6.3 顆粒堆積體內滲流坡度與單寬水流功率之相關性 186 第七章 結論與建議 189 7.1 結論 189 7.2 建議 190 參考文獻 193

    [1] 行政院農業委員會水土保持局 (2017),「水土保持手冊」。
    [2] 黃立政 (2004),「土石流災害防治概論」,全華科技圖書股份有限公司。
    [3] 詹錢登 (2000),「土石流概論」,科技圖書股份有限公司。
    [4] 陳文福、吳士杰、蔡明波 (2011),「匹亞桑溪集水區土石流事件之規模探討」,中華民國水土保持學報,43(3),311-320。
    [5] 陳韋利、林政侑、林昭遠 (2014),「以逕流歷線建置土石流預警系統之研究」,中華民國水土保持學報,46(1),901-916。
    [6] 黃清哲、孫坤池、陳潮億、尹孝元 (2007),「不同型態土石流地聲特性之實驗研究」, 38(4): 417-430。
    [7] 周憲德、李璟芳、黃郅軒、張友龍 (2012),「礫石型溪溝崩塌及土石流監測與流動特徵分析」,中華民國力學學會第三十六屆全國力學會議。
    [8] 周憲德、楊祥霖、李璟芳、黃郅軒 (2013),「火炎山土石流之流動型態與地聲特性分析」,中華民國水土保持學報,46(2),71-78。
    [9] 葉智惠、黃清哲、連榮吉 (2008),「石塊運動產生地表震動及空中聲音訊號之研究」,中華民國水土保持學報,第 39 卷,第 4 期,頁 449-458。
    [10] 李明熹 (2006),「土石流發生降雨警戒分析及其應用」,國立成功大學水利及海洋工程研究所,博士論文。
    [11] 凌杰民 (2018),「不同渠床堆積形態下滲流引致土石流之歷程分析」,國立中央大學土木工程研究所,碩士論文。
    [12] 陳威宏 (2017),「土石流現地監測與流動型態分析」,國立中央大學土木工程研究所,碩士論文。
    [13] 彭楙鈞 (2019),「火炎山土石流現地監測及土石流粒徑分析」,國立中央大學土木工程研究所,碩士論文。
    [14] 邱奕旭 (2020),「土石流現地監測與地聲頻譜分析」,國立中央大學土木工程研究所,碩士論文。
    [15] 劉耀宇 (2016),「土石流現地監測與地聲試驗分析」,國立中央大學土木工程研究所,碩士論文。
    [16] 蔡勝棠 (2018),「火炎山土石流之降雨特性及地貌演變分析」,國立中央大學土木工程研究所,碩士論文。
    [17] 土石流防災資訊網-行政院農業委員會水土保持局。取自http://246.swcb.gov.tw
    [18] Arattano M., and Marchi L. (2008),“System and Sensors for Debris flow Monitoring and Warning”, Sensors , pp. 2436-2452.
    [19] Arnaud B. et al. (2013), “Continuous catchment-scale monitoring of geomorphic processes with a 2-D seismological array”, Earth Surface Vol. 118, No. 3, pp. 1956-1974.
    [20] Arnaud B., Niels H., and Turowski J.M. (2016), “Seismic monitoring of torrential and fluvial processes”, Earth Surface Vol. 4, pp. 285-307.
    [21] Arattano M., Coviello V., Abancó C., Hürlimann M. (2016), “Methods of Data Processing for Debris Flow Seismic Warning”, International Journal of Erosion Control Engineering Vol. 9, No. 3, pp. 114-121.
    [22] Ching-Jer Huang, Hsiao-Yuen Yin,Chao-Yi Chen, Chih-Hui Yeh and Chin-Lun Wang (2007), “Ground vibrations produced by rock motions and debris flows”, Journal of Geophysical Research Vol. 112.
    [23] Comiti F. et al. (2014), “A new monitoring station for debris flows in the European Alps: first observations in the Gadria basin”, Nat Hazards Vol.73, No. 3, pp. 1175-1198.
    [24] Coviello, V. (2015), “Debris flow seismic monitoring and warning”, PhD Thesis, Politecnico di Torino, doi: 10.6092/polito/porto/2616887.
    [25] Gregoretti C. (2000), “The initiation of debris flow at high slopes: experimental results”, Journal of Hydraulic Research, 38, pp. 83-88.
    [26] Gregoretti C. and Dalla G. Fontana (2008), “The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff”, Hydrological Processes Vol. 22, pp. 2248-2263.
    [27] Hürlimann M., Abancó C., Moya J., Vilajosana I. (2013), “Results and Experiences Gathered at the Rebaixader Debris-flow Monitoring Site, Central Pyrenees, Spain”, Landslides , pp. 939-953.
    [28] Provost F., Hibert C., and Malet J.-P.,(2017), “Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier”, Geophysical Research Letters Vol. 44, pp. 113-120.

    QR CODE
    :::