跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳政憲
Zheng-Xian Chen
論文名稱: 模擬極端太陽風暴事件發生期間,月球鈉外氣層分佈情形
Simulating the distribution of the lunar sodium exosphere during the extreme solar storm event
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 114
中文關鍵詞: 月球外氣層ARTEMIS衛星
外文關鍵詞: Moon, Exosphere, ARTEMIS satellite
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   與月球外氣層相關的研究已有許多的成果,但是針對太陽風暴事件發生期間月球外氣層隨時間變化的研究則相對較少,因此我們利用環繞月球的ARTEMIS衛星上的固態望遠鏡(Solid State Telescope, SST),獲得太陽風暴發生期間近月球太空環境的能量通量,計算出太陽風暴發生期間鈉原子的隨時間變化的產量。接著,我們使用蒙地卡羅方法(Monte-Carlo method)模擬鈉原子在近月球太空環境中傳輸與消散的彈跳軌道。同時,也利用能量平衡方程式計算月球的全球表面溫度,以利於模擬鈉原子在撞擊月球表面時的反應結果。利用鈉原子軌跡的模擬結果我們可以分別得到月球鈉外氣層在穩定狀態下與產生鈉原子後不同時段的密度分布,最後,我們再結合上述結果與計算所得的太陽風暴發生期間鈉原子產量,我們便可以得到太陽風暴事件發生時月球鈉外氣層柱密度分佈隨時間變化的模擬結果,相信利用該結果可以對未來月球衛星任務有所幫助。


      There have been many studies related to the lunar exosphere, but there have been relatively few studies on the changes with time of the lunar exosphere during the solar storm. Therefore, we use the Solid State Telescope (SST) on the ARTEMIS satellite around the moon to obtain the energy flux of the near-moon space environment during the solar storm, and calculate the time-dependent production of sodium atoms during the solar storm. Next, we use the Monte-Carlo method to simulate the bounce trajectory of sodium atoms transporting and dissipating in the near-moon space environment. At the same time, the energy balance equation is also used to calculate the global surface temperature of the moon to facilitate the simulation of the reaction results when sodium atoms hit the surface of the moon. Using the simulation results of the sodium atom trajectory, we can obtain the density distribution of the lunar sodium exosphere at the steady state and time dependent, respectively. Finally, we combine the above results with the calculated sodium atom yield during the solar storm. We can obtain the simulation results of the distribution of the density of the lunar sodium exosphere over time during the solar storm event. It is believed that this result can be helpful for future lunar satellite missions.

    摘要………………………………………………………………………………  ⅰ Abstract…………………………………………………………………………  ⅱ 致謝………………………………………………………………………………  ⅲ 目錄………………………………………………………………………………  ⅴ 圖目錄……………………………………………………………………………  ⅶ 表目錄……………………………………………………………………………  ⅹⅲ 第1章 緒論……………………………………………………………………………  1 1.1 月球外氣層中性原子來源與產生機制………………………………………  2 1.1.1 流星體撞擊汽化……………………………………………………  3 1.1.2 光子激發解吸………………………………………………………  4 1.1.3 離子濺射……………………………………………………………  4 1.2 觀測……………………………………………………………………………  5 1.2.1 地面觀測……………………………………………………………  5 1.2.2 實地觀測……………………………………………………………  8 1.3 ARTEMIS衛星…………………………………………………………………  13 1.3.1 任務………………………………………………………………...  13 1.3.2 儀器………………………………………………………………...  17 1.3.3 月球環境…………………………………………………………...  20 1.3.3.1 進入地球磁層裡……………………………………………..  22 1.3.3.2 位於平靜太陽風……………………………………………..  23 1.3.3.3 當太陽風暴發生……………………………………………..  23 1.3.4 太陽風暴事件數據………………………………………………..  23 第2章 月球外氣層模型……………………………………………………………...  31 2.1 月球表面熱模型……………………………………………………………..  32 2.1.1 熱傳導方程式……………………………………………………...  33 2.2 月球外氣層鈉原子軌跡模型………………………………………………..  36 2.2.1 粒子移動…………………………………………………………...  39 2.2.1.1 太陽輻射壓力………………………………………………...  39 2.2.2 表面交互作用……………………………………………………...  39 2.2.2.1 粒子反彈……………………………………………………...  39 2.2.2.2 再發射………………………………………………………...  40 2.2.2.3 冷阱…………………………………………………………...  40 2.2.3 結束模型…………………………………………………………...  40 2.2.3.1 粒子逃逸……………………………………………………...  41 2.2.3.2 光電離………………………………………………………...  41 2.2.3.3 冷阱…………………………………………………………...  41 2.2.4 高速組……………………………………………………………...  47 2.2.5 低速組……………………………………………………………...  48 第3章 結果…………………………………………………………………………...  49 3.1 穩定狀態……………………………………………………………………..  50 3.2 時間變化……………………………………………………………………..  53 3.3 極端太陽風暴………………………………………………………………..  57 第4章 總結與討論…………………………………………………………………...  60 第5章 參考書目……………………………………………………………………...  65 附錄A……………………………………………………………………………………  68

    期刊論文
    1. Cassidy, W., Johnson, R.E., 2005. Monte Carlo model of sputtering and other ejection processes within a regolith. Icarus 176, 499–507.
    2. Chao, J. K., D. J. Wu, C.-H. Lm, Y.-H. Yang, X.Y. Wang, M. Kessel, S.H. Chen, and R.P. Lepping, 2002, MODELS FOR THE SIZE AND SHAPE OF THE EARTH'S MAGNETOPAUSE AND BOW SHOCK
    3. Cintala, M.J., 1992. Impact-induced thermal effects in the lunar and mercurian regoliths. J. Geophys. Res. 97 (E1), 947–973.
    4. Colaprete, A., M. Sarantos, D. H. Wooden, T. J. Stubbs, A. M. Cook, M. Shirley, 2016, How surface composition and meteoroid impacts mediate sodium and potassium in the lunar exosphere, SCIENCE, 15 JANUARY 2016 • VOL 351 ISSUE 6270, 249-252
    5. Farrell, W. M., J. S. Halekas, R. M. Killen, G. T. Delory, N. Gross, L. V. Bleacher, D. Krauss-Varben, P. Travnicek, D. Hurley, T. J. Stubbs, M. I. Zimmerman, and T. L. Jackson, 2012, Solar-Storm/Lunar Atmosphere Model (SSLAM): An overview of the effort and description of the driving storm environment, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E00K04, doi:10.1029/2012JE004070, 2012
    6. Flynn, B., Mendillo, M., 1993. A picture of the Moon’s atmosphere. Science 261, 184–186.
    7. Hodges, R. R. (1973). Helium and hydrogen in the lunar atmosphere. Journal of Geophysical Research, 78 , 8055-8064.
    8. Hunten, D.M., Sprague, A.L., 1997. Origin and character of the lunar and mercurian atmospheres. Adv. Space Res. 19 (10), 1551–1560.
    9. Hunten, D.M., Cremonese, G., Sprague, A.L., Hill, R.E., Verani, S., Kozlowski, R.W.H., 1998. The Leonid meteor shower and the lunar sodium atmosphere. Icarus 136 (2), 298–303.
    10. Ip, W.-H., 1991. The atomic sodium exosphere/coma of the Moon. Geophys. Res. Lett. 18, 2093–2096.
    11. Killen, R.M., Ip, W.-H., 1999. The surface-bounded atmospheres of Mercury and the Moon. Rev. Geophys. 37 (3), 361–406.
    12. Killen, R.M., Hurley, D.M., Farrell, W.M., 2012. The effect on the lunar exosphere of a coronal mass ejection passage. J. Geophys. Res. 117, E00K02.
    13. Kudriavatsev et al.,2005; Y. Kudriavtsev*, A. Villegas, A. Godines, R. Asomoza, 2005, Calculation of the surface binding energy for ion sputtered particles, Applied Surface Science 239 (2005) 273–278
    14. Mangano, V. et al., 2007. The contribution of impulsive meteoritic impact vapourization to the Hermean exosphere. Planet. Space Sci. 55 (1), 1541–1556.
    15. Mendillo, M., Flynn, B., Baumgardner, J., 1993. Imaging experiments to detect an extended. Sodium atmosphere on the Moon. Adv. Space Res. 13 (10), 313–319.
    16. Mendillo, M., Baumgardner, J., Wilson, J., 1999. Observational test for the solar wind sputtering origin of the Moon’s extended sodium atmosphere. Icarus 137, 13–23.
    17. Morgan and Shemansky, 1991; Morgan, T.H., Shemansky, D.E., 1991. Limits to the lunar atmosphere. J. Geophys. Res. 96 (A2), 1351–1367.
    18. McGrath et al., 1986; McGrath, M.A., Johnson, R.E., Lanzerotti, L.J., 1986. Sputtering of sodium on the planet Mercury. Nature 323, 694–696.
    19. Potter, A. E., and Morgan, T. H. (1985). Discovery of sodium in the atmosphere of Mercury. Science, 229 , 651-653.
    20. Potter, A.E., Morgan, T.H., 1988. Discovery of sodium and potassium vapor in the atmosphere of the Moon. Science 241, 675–680.
    21. Potter, A. E., and T. H. Morgan (1990), Evidence for magnetospheric effects on the sodium atmosphere of Mercury, Science, 248, 835–838, doi:10.1126/science.248.4957.835.
    22. Sigmund, P., 1969. Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383–416.
    23. Smyth, W.H., Marconi, M.L., 1995. Theoretical overview and modeling of the sodium and potassium atmospheres of the Moon. Astrophys. J. 443 (1), 371–392.
    24. Sprague, A.L., 1992. Mercury’s atmospheric bright spots and potassium variations. J. Geophys. Res. 97 (E11), 18257–18264.
    25. Tenishev, Valeriy, Martin Rubin, Orenthal J. Tucker, Michael R. Combi, Menelaos Sarantos, 2013, Kinetic modeling of sodium in the lunar exosphere, Icarus 226 (2013) 1538–1549
    26. Wang, Y.-C., and Ip, W.-H. (2011). Source dependency of exospheric sodium on Mercury. Icarus, 216 , 387–402.
    27. Wurz, P., U. Rohner, J.A. Whitby, C. Kolbb, H. Lammer, P. Dobnikar, J.A. Martín-Fernández, 2007, The lunar exosphere: The sputtering contribution, Icarus 191 (2007) 486–496
    28. Xu, X., V. Angelopoulous, Y. Wang, P. Zuo, H. C. Wong, and J. Cui, 2017, The Energetic Particle Environment of the Lunar Nearside: SEP Influence, The Astrophysical. Journal., 849-151.

    網站
    https://umbra.nascom.nasa.gov/SEP/
    http://artemis.ssl.berkeley.edu/index.shtml
    https://www.nasa.gov/mission_pages/ladee/main/index.html
    https://www.nasa.gov/themis-and-artemis

    QR CODE
    :::