跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳孟遠
Meng-Yenan Cheng
論文名稱: 數值域邊界上之線段
Line Segments of The Boundary of Numerical Range
指導教授: 高華隆
Hwa-Long Gau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 91
語文別: 英文
論文頁數: 31
中文關鍵詞: 數值域
外文關鍵詞: numerical range
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討一個四階方陣A,其數值域(Numerical Range)邊界上之線段的情形。對A的數值域而言,若PA是可分解的,則其邊界上線段的情形不難解決。所以我們針對PA 是不可分解的情況來推導其邊界上具有一個線段的充分必要條件。另外,具有一對平行邊的情況亦獲得解決,值得注意的是在這個情況下,數值域的邊界最多只有這兩個線段。


    In this thesis, we consider the problem of characterizing the numerical ranges of 4 by 4 matrices which have line segments on its boundary. If pA is reducible, we will obtain the result what we want easily. Thus it is sufficient to consider the irreducibility of pA.
    In this case, we will give a sufficient and necessary condition for the numerical range of a 4 by 4 matrix with a line segment on its boundary. Moreover, we also give a criterion for
    the numerical range of a 4 by 4 matrix with a pair of parallel line segment on its boundary.

    1. Introduction 2. Preliminaries 2.1 Basic Properties of Numerical Range 2.2 Kippenhahn Curve 3. The Numerical Range of 3 by 3 Matrices 4. The Numerical Range of 4 by 4 Matrices 4.1 A is reducible 4.2 pA is reducible 4.3 pA is irreducible Reference

    [1] A. Brown and P.R. Halmos, Algebraic properties of
    Toeplitz operators, J. Reine Angew. Math., 231 (1963),
    89-102.
    [2] M. J. Crabb, The powers of an operator of numerical
    radius one, Michigan Math. J., 18 (1971), 252-256.
    [3] R. A. Horn and C. R. Johnson, Matrix
    Analysis, Cambridge Univ. Press, 1985.
    [4] D. S. Keeler, L. Rodman and I. M. Spitkovsky, The
    numerical range of 3 by 3 matrices, Linear Algebra
    Appl., 252(1997),115-139.
    [5] R. Kippenhahn, Uber den Wertevorrat einer Matrix,
    Math. Nachr., 6 (1951),193-228.
    [6] H. Nakazato, Quartic Curves associated to 4 by 4
    Matrices, Sci.Rep. Hirosaki Univ., 43(1996),209-221.
    [7] P. Y. Wu, Numerical Ranges of Hilbert Space
    Operators, preprint.

    QR CODE
    :::