| 研究生: |
丁崇武 Chung-Wuu Ding |
|---|---|
| 論文名稱: |
交流馬達的新型磁場導向控制 The innovative methods of eld-oriented control used for AC motor |
| 指導教授: |
董必正
Pi-Cheng Tung |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 交流電機控制 、磁場導向控制 、轉子磁通角度估算 、無 感測器驅動 |
| 外文關鍵詞: | AC motor control, field-oriented control (FOC), rotor flux angle estimation, sensorless drive |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於半導體微控制器的大幅精進,所以使得原本無法輕易取得的大量即時運算,變得輕而易舉。因而造成需要大量計算的磁場導向控制,日益普及。因為此種驅動與控制方式可將馬達性能充分發揮,所以磁場導向控制在今日的馬達驅動上,成為必備條件。本論文針對交流馬達的二大分支(感應與同步馬達)進行理論分析,並陳述共同與相異的部分。繼而,在解析各自傳統磁場導向控制的過程中,發現理論上的盲點。進一步,提出修正方法以便得到更好的馬達驅動性能。在此二分支的馬達上進行磁場導向控制的首要工作,均是定位出轉子磁通的位置。
對於交流感應馬達而言,轉子磁通是在運轉過程中,由定子磁場感應而生。所以不是一個固定存在的物理量。若利用外加感測器,則會因為技術與成本的瓶頸,破壞此類馬達的普及性。而傳統的驅動方式,又有許多理論上的盲點;諸如間接磁場導向(IFOC)計算轉子磁通角度是根據定子電流命令,而非回授,造成驅動失真且效率的低落。因而,本文在此的目標是在不增加任何製造成本的前提下,提出可以消除理論盲點的方法。所以本文建立一套自適應的機制,能在穩態運轉時,直接以演算取出準確的轉子磁通位置,並以鎖相迴路(PLL)維持在穩態的情況下,將此位置逐步代入系統中。一旦穩態破壞時,能夠退出,並取回傳統IFOC,以待再次進入穩態後,套用筆者提出的新方法,以得到更低的操作電流。
此外,對於交流同步馬達而言,雖然具有實際存在的固定轉子磁通,但是在組裝的過程中,會因為端蓋組裝而與外部的角度編碼器失準,此外,編碼器是一個昂貴且耗損率極高的裝置。再者,馬達的安裝位置通常位於設備的核心處,若需要定期的更換,勢必大幅地造成工業界的困擾。所以無位置感測器的磁場導向控制若能達成準確可靠的條件,實為工業界所期盼。不過本文發現,傳統的無感測器磁場導向控制,在理論架構上,亦有尚未被發掘的缺陷;諸如估算結果端賴預知的系統參數,並且無法隨著操作條件自行調整,所以在此致力找出可行且不增加成本的解決方法。
With the significant advancement of semiconductor microcontrollers, real-time computational capabilities that were once difficult to achieve have become increasingly accessible. As a result, field-oriented control (FOC), which demands extensive computation, has become widely adopted due to its ability to fully exploit motor performance. Today, FOC is considered essential in modern motor drive systems.
This paper presents a unified theoretical analysis of the two main branches of AC motors—induction motors (IMs) and synchronous motors (SMs)—highlighting both their commonalities and distinctions. Through a detailed examination of the traditional FOC schemes for each motor type, several theoretical limitations are identified. To address these, improved control strategies are proposed to enhance drive performance without increasing hardware cost. Central to both motor types is the precise estimation of rotor flux position, which is critical for effective FOC implementation.
For IMs, the rotor flux is not a static physical quantity but is instead induced by the stator field during operation. The use of external sensors is often limited by cost and complexity, potentially undermining the advantages of IM-based systems. Conventional approaches, such as indirect field-oriented control (IFOC), estimate the rotor flux angle based on current command values rather than actual feedback, leading to distortions and reduced efficiency. To overcome this, a novel adaptive mechanism is developed, capable of directly estimating the rotor flux angle during steady-state operation. This mechanism integrates a phase-locked loop (PLL) to continuously track and inject the estimated angle into the system. When steady-state conditions are lost, the method automatically reverts to traditional IFOC and resumes the proposed algorithm once steady-state is re-established, yielding improved efficiency and reduced current consumption.
For SMs, although the rotor flux is inherently fixed, mechanical misalignment during assembly often leads to errors between the rotor flux position and the external encoder. Furthermore, encoders are costly and prone to wear, and their maintenance poses practical challenges in industrial environments. Therefore, reliable sensorless FOC is highly desirable. However, this study identifies key flaws in existing sensorless FOC methods, particularly their reliance on predetermined motor parameters and lack of adaptability to changing operating conditions. Accordingly, this paper proposes a low-cost, parameter-insensitive alternative that enhances sensorless performance in SM drives.
[1]
Christian, A.; Ramon, R.; Luis, N.C.; Corina, P. \emph{{Sensorless Scheme for Permanent-Magnet Synchronous Motors Susceptible to Time-Varying Load Torques}}. \hskip 1em plus 0.5em minus 0.4em\relax Mathematics 2023, 11, 3066.
[2]
Cai, J.; Cheok, A.D.; Yan, Y. A. \emph{{Survey of Phase-Locked Loop Technologies in Sensorless Position Estimation of Permanent Magnet Synchronous Motor Drives}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Instrum. Meas. 2024, 73, 1504016.
[3]
Murphy, J.M.D.; Turnbull, F.G. \emph{{Power Electronic Control of AC Motors}}.\hskip 1em plus 0.5em minus 0.4em\relax Pergamon Press: New York, NY, USA, 1st ed., 1988.
[4]
Bose, B.K. \emph{{Power Electronics and AC Drives}}.\hskip 1em plus 0.5em minus 0.4em\relax Prentice-Hall Inc.: Hoboken, NJ, USA, 1st ed., 1986.
[5]
Novotny, D.W.; Lipo, T.A. \emph{{Vector Control and Dynamics of AC Drives}}.\hskip 1em plus 0.5em minus 0.4em\relax Oxford University Press: New York, NY, USA, 1st ed., 1996; Chapter 6; pp. 257–316.
[6]
Degner, W.; Guerrero, J.M.; Briz, F. \emph{{Slip-gain estimation in field-orientation-controlled induction machines using the system transient response}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Appl. 2006, 42, 702–711.
[7]
Chen, B.; Yao,W.; Chen, F.; Lu, Z. \emph{{Parameter sensitivity in sensorless induction motor drives with the adaptive full-order observer}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Electron. 2015, 62, 4307–4318.
[8]
Alonge, F.; Cangemi, T.; D’Ippolito, F.; Fagiolini, A.; Sferlazza, A. \emph{{Convergence analysis of extended kalman filter for sensorless control of induction motor}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Electron. 2015, 62, 2341–2352.
[9]
Dom A, J.R. \emph{{Discrete-time modeling and control of induction motors by means of variational integrators and sliding modes; parti: Mathematical modeling}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Electron. 2015, 62, 5393–5401.
[10]
Dom A, J.R. \emph{{Discrete-time modeling and control of induction motors by means of variational integrators and sliding modes; partii: Control design}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Electron. 2015, 62, 6183–6193.
[11]
Comanescu, M.; Xu, L. \emph{{An Improved Flux Observer Based on PLL Frequency Estimator for Sensorless Vector Control of Induction Motors.}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Electron. 2006, 53, 50–56.
[12]
Xin, Z.; Zhao, R.; Blaabjerg, F. \emph{{An Improved Flux Observer for Field-Oriented Control f Induction Motors Based on Dual Second-Order Generalized Integrator Frequency-Locked Loop.}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 513–525.
[13]
Diana, G. \emph{{Transient behavior of induction motor flux and torque during run-up}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Energy Convers. 1987, EC-2, 465–469.
[14]
Jones, M. \emph{{Asynchronous current control scheme for multiphase induction motor drives}}.\hskip 1em plus 0.5em minus 0.4em\relax EEE Trans. Energy Convers. 2009, 24, 860–868.
[15]
Abdel-Rahim, N.M.B.; Shaltout, A. \emph{{An unsymmetrical two-phase induction motor drive with slip-frequency control}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Energy Convers. 2009, 24, 608–616.
[16]
Rubin, N.P.; Harley, R.G.; Diana, G. \emph{{Evaluation of various slip estimation techniques for an induction machine operating under field oriented control conditions}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Appl. 1992, 28, 1367–1374.
[17]
Liaw, C.M.; Wang, J.B.; Chang, Y.C. \emph{{A fuzzy adapted field oriented mechanism for induction motor drive}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Energy Convers. 1996, 11, 76–83.
[18]
Mili´c, A.R.; Vukosavi´c, S.N. \emph{{Sensorless Control of Induction Motor Based on Rotors Slot Harmonics and Digital Adaptive Filters}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Appl. 2024, 60, 3950–3963.
[19]
Elgbaily, M.; Anayi, F.; Alshbib, M.M. \emph{{A combined control scheme of direct torque control and field-oriented control algorithms for three-phase induction motor: Experimental validation}}.\hskip 1em plus 0.5em minus 0.4em\relax Mathematics 2022, 10, 3842.
[20]
Hamdi, W.; Hammoudi, M.Y.; Betka, A. \emph{{Sensorless Speed control of induction motor using model reference adaptive system and deadbeat regulator}}.\hskip 1em plus 0.5em minus 0.4em\relax Eng. Proc. 2023, 56, 16.
[21]
Carbone, L.; Cosso, S.; Kumar, K.; Marchesoni, M.; Passalacqua, M.; Vaccaro, L. \emph{{Induction motor field-oriented sensorless control with filterand long cable}}.\hskip 1em plus 0.5em minus 0.4em\relax Energies 2022, 15, 1484.
[22]
Sepeeh, M.S.; Zulkifli, S.A.; Sim, S.Y.; Chiu, H.J.;Wanik, M.Z.C. \emph{{Speed tracking for IFOC induction motor speed control using hybrid sensorless speed estimator based on flux error for electric vehicles application}}.\hskip 1em plus 0.5em minus 0.4em\relax Machines 2022, 10, 1089.
[23]
Kuczmann, M.; Horváth, K. \emph{{Tensor Product Alternatives for Nonlinear Field-Oriented Control of Induction Machines}}.\hskip 1em plus 0.5em minus 0.4em\relax Electronics 2024, 13, 1405.
[24]
Sadik, O.; Yilmaz, S.; Nurettin, U. \emph{{Voltage Error Phase Locked Loop (PLL) Based Model Adaptive Sensorless Vector Control Algorithm for Induction Motors}}.\hskip 1em plus 0.5em minus 0.4em\relax In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition(APEC), Tampa, FL, USA, 26–30 March 2017; pp. 1914–1920.
[25]
Carraro, M.; Zigliotto, M. \emph{{Automatic parameter identification of inverter-fed induction motors at standstill.}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Electron. 2014, 61, 4605–4613.
[26]
Abdel-Khalik, A.S.; Daoud, M.I.; Ahmed, S.; Elserougi, A.A.; Massoud, A.M. \emph{{Parameter identification of five-phase induction machines with single layer windings}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Electron. 2014, 61, 5139–5154.
[27]
Zhao, L.; Huang, J.; Liu, H.; Li, B.; Kong, W. \emph{{Second-order sliding-mode observer with online parameter identification for sensorless induction motor drives}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Electron. 2014, 61, 5280–5289.
[28]
Kenn’e, G.; Ahmed-Ali, T.; Lamnabhi-Lagarrigue, F.; Arzand’, A. \emph{{Real-time speed and flux adaptive control of induction motors using unknown time-varying rotor resistance and loadtorque}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Energy Convers. 2009, 24, 375–387.
[29]
Bolognani, S.; Calligaro, S.; Petrella, R. \emph{{Design issues and estimation errors analysis of back-EMF based position and speed observer for SPM synchronous motors.}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 159–170.
[30]
Lee, K.W.; Ha, J.I. \emph{{Evaluation of back-EMF estimators for sensorlesscontrol of permanent magnet synchronous motors}}.\hskip 1em plus 0.5em minus 0.4em\relax J. Power Electron. 2012, 12, 1–11.
[31]
Park, Y.; Sul, S.K.; Ji, J.K.; Park, Y.J. \emph{{Analysis of estimation errors in rotor position for a sensorless control system using a PMSM}}.\hskip 1em plus 0.5em minus 0.4em\relax J. Power Electron. 2012, 12, 748–757.
[32]
Li, Y.; Zhu, Z.Q.; Howe, D.; Bingham, C.M. \emph{{Modeling of Cross-Coupling Magnetic Saturation in Signal Injection Based Sensorless Control Permanent-Magnet Brushless AC Motors}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Magn. 2007, 43, 2552–2554.
[33]
Jansen, P.L.; Lorenz, R.D. \emph{{Transducerless position and velocity estimation in induction and salient AC machines}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Appl. 1995, 31, 240–247.
[34]
Degner, M.W.; Lorenz, R.D. \emph{{Using multiple saliencies for the estimation of flux, position, and velocity in AC machines}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Appl. 1998, 34, 1097–1104.
[35]
Matsui, N.; Takeshita, T.; Yasuda, K. \emph{{A new sensorless drive of brushless DC motor}}.\hskip 1em plus 0.5em minus 0.4em\relax In Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, San Diego, CA, USA, 13 November 1992; pp. 430–435.
[36]
Chen, Z.; Tomita, M.; Ichikawa, S.; Doki, S.; Okuma, S. \emph{{Sensorless control of interior permanent magnet synchronous motor by estimation of an extended electromotive force}}.\hskip 1em plus 0.5em minus 0.4em\relax In Proceedings of the Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting andWorld Conference on Industrial Applications of Electrical Energy (Cat. No. 00CH37129), Rome, Italy, 8–12 October2000; Volume 3, pp. 1814–1819.
[37]
Morimoto, S.; Kawamoto, K.; Sanada, M.; Takeda, Y. \emph{{Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Appl. 2002, 38, 1054–1061.
[38]
Inoue, Y.; Kawaguchi, Y.; Morimoto, S.; Sanada, M. \emph{{Performance improvement of sensorless IPMSM drives in a low-speed region using online parameter identification}}.\hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Appl. 2011, 47, 798–804.
[39]
Ichikawa, S.; Tomita, M.; Doki, S.; Okuma, S. \emph{{Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification}}. \hskip 1em plus 0.5em minus 0.4em\relax IEEE Trans. Ind. Appl. 2006, 42, 1264–1274.
[40]
Kim, J.; Sul, S. \emph{{High performance PMSM drives without rotational position sensors using reduced order observer}}.\hskip 1em plus 0.5em minus 0.4em\relax In Proceedings of the IAS ’95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting, Orlando, FL, USA, 8–12 October 1995; pp. 75–82.
[41]
Bimal, K.B. \emph{{Modern Power Electronics and AC Drives.}}\hskip 1em plus 0.5em minus 0.4em\relax Prentice Hall: Knoxville, TN, USA, 2001; ISBNs 0-13-16743-6/0-13-016743-6.
[42]
Chen, S.; Zhang, X.;Wu, X.; Tan, G.; Chen, X. \emph{{Sensorless Control for IPMSM Based on AdaptiveSuper-Twisting Sliding-Mode Observer and Improved Phase-Locked Loop}}.\hskip 1em plus 0.5em minus 0.4em\relax Energies 2019, 12, 1225.
[43]
Kim, T.W.; Watanabe, J.; Sonoda, S.; Hirai, J. \emph{{Initial pole position estimation of surface PM-LSM}}, \hskip 1em plus 0.5em minus 0.4em\relax J. Power Electron. 2001, 1, 1–8.