| 研究生: |
黃琇雯 Hsiu-Wen Huang |
|---|---|
| 論文名稱: |
路基土壤含水量變化對鋪面永久變形分析之探討 Effects of Subgrade Moisture Content on Permanent Deformation of Pavements |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 路基土壤 、回彈模數 、永久變形 |
| 外文關鍵詞: | permanent deformation, resilient modulus, subgrade soil |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
路基為公路之基底,支持面層結構,以達成負荷交通之任務,然而路基土壤受到水及交通荷重的聯合作用時,將使鋪面層產生損壞並降低鋪面服務水準進而減少鋪面使用壽命。因此,本研究利用A-7-5凝聚性路基土壤在不同含水量狀態下之反覆載重試驗結果,建立回彈應變迴歸式及永久應變迴歸式,然後使用ABAQUS有限元素程式進行在不同載重條件下以省道斷面為例之三維柔性鋪面結構分析,由所得之路基土壤受力狀況配合回彈應變迴歸式,探討路基土壤在不同含水量狀態下對應之回彈模數,據以評估不同交通荷重作用下路基土壤在不同含水量狀態時對鋪面結構及其成效之影響。另外,採用ABAQUS有限元素程式所提供之Mohr-Coulomb塑性模式進行鋪面結構分析,探討路基土壤在不同含水量狀態下使用彈性模式與塑性模式對鋪面結構分析之影響,並推算路基土壤之永久變形。
分析結果顯示,當路基土壤含水量增加時對鋪面結構分析之影響隨之增加,而隨軸重加倍及胎壓增加時,路基土壤含水量變化對鋪面結構之影響也隨之增加。且路基土壤在高含水量狀態下承載能力降低,因此造成抵抗車轍之能力降低,使鋪面損壞受車轍所控制;而在含水量為OMC狀態下,路基土壤承載力佳,故較易發生瀝青層之疲勞損壞。而路基土壤之含水量較高時,使用彈塑性模式所得垂直位移、水平應變與垂直應變皆較彈性模式為大,且隨軸重增加,兩模式之差異隨之增加,但影響範圍侷限在基層及路基,而對瀝青層並無顯著影響。
The resilient modulus and cumulative permanent strain of subgrade soils under various traffic and environmental conditions are important considerations for the design of a pavement against fatigue and rutting failures. A simple model was developed to evaluate the resilient modulus and accumulated permanent strain of cohesive subgrade soils at different moisture contents under repeated loads. The empirical model was derived from the observed behavior of an A-7-5 cohesive soil. Then the response of the pavement and the corresponding resilient modulus of subgrade were calculated under various traffic and environmental conditions using the three-dimensional finite element program ABAQUS. The study also compares pavement response using elastic and elasto-plastic subgrade material models.
The results reveal that subgrade at higher moisture content has a larger influence on the pavement response. As axle load and tire pressure increase, changes in subgrade moisture content on pavement response become more pronounced. Pavement failure is controlled by the permanent deformation when the subgrade is at high water content; while it is controlled by the fatigue cracking when the subgrade is at optimum moisture content. In addition, strains in the pavement system obtained using elasto-plastic subgrade material model are higher than those obtained using elastic model.
吳學禮 (2001),鋪面、材料工程實務,詹氏,台北市。
李梓賢 (1998),「三維有限元素法於柔性鋪面之應用」,碩士論文,國立成功大學土木工程研究所,台南。
周芳如 (1998),「柔性鋪面三維有限元素分析模型之建立及其應用」,碩士論文,國立成功大學土木工程研究所,台南。
林志憲 (1999),「解析方法應用於柔性鋪面設計」,碩士論文,國立成功大學土木工程研究所,台南。
張永生 (2002),「柔性鋪面之績效評估與非均佈荷重效應」,碩士論文,國立中央大學土木工程研究所,桃園。
馮天正 (2000),「三維有限元素應用於柔性鋪面之非線性分析」,碩士論文,國立中央大學土木工程研究所,桃園。
黃建維 (2001),「三維非線性鋪面材料程式及分析模型」,碩士論文,國立成功大學土木工程研究所,台南。
黃韋綸 (2002),「以數值分析方法探討深基礎之承載力形狀效應」,碩士論文,國立台灣大學土木工程研究所,台北。
楊樹榮 (2002),「路基土壤反覆載重下之回彈與塑性行為及模式建構」,碩士論文,國立中央大學土木工程研究所,桃園。
盧俊鼎 (2001),「路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討」,博士論文,國立中央大學土木工程研究所,桃園。
盧俊鼎、黃偉慶 (1997),「路基土壤回彈模數的發展與研究趨勢」,台灣公路工程,第二十三卷,第十一期,第2-15頁。
Chen, D. H., Zaman, M., Laguros, J., and Soltani, A. (1995). “Assessment of computer programs for analysis of flexible pavement structure.” Transportation Research Record, No. 1482, 123-133.
Chen, W. F., and Han, D. J. (1995). Plasticity for Structural Engineers. Springer-Verlag, New York.
Cho, Y. H., McCullough, B. F., and Weissmann, J. (1996). “Considerations on finite-element method application in pavement structural analysis.” Transportation Research Record, No. 1539, 96-101.
Desai, C. S., and Siriwardane, H. J. (1984). Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials. Prentice-Hall, Englewood Cliffs, New Jersey.
Huang, B., Mohammad, L. N., and Rasoulian M. (2001). “3-D numerical simulation of asphalt pavement at Louisiana accelerated loading facility (ALF).” TRB 2001 Annual Meeting CD-ROM, TRB 2001-00002.
Huang, Y. H. (1993). Pavement Analysis and Design, Prentice-Hall, Englewood Cliffs, New Jersey.
HKS (2001a). ABAQUS/Standard User’s Manual. Version 6.2, Hibbit, Karlsson & Sorensen, Inc., Pawtucket, RI.
HKS (2001b). ABAQUS/Theory Manual. Version 6.2, Hibbit, Karlsson & Sorensen, Inc., Pawtucket, RI.
Kirkner, D. J., Caulfield, P. N., and McCann, D. M. (1994). “Three-dimensional finite-element simulation of permanent deformations in flexible pavement systems.” Transportation Research Record, No. 1448, 34-39.
Lee, W., Bohra N. C., Altschaeffl, A. G., and White, T. D. (1997). “Resilient Modulus of cohesive soils.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(2), 131-136.
Menetrey, Ph., and Willam, K. J. (1995). “Triaxial failure criterion for concrete and its generalization.” ACI Structural Journal, 92(3), 311-318.
Mikhai, M. Y., and Mamlouk, M. S. (1998). “Effect of traffic load on pavement serviceability.” Flexible pavement rehabilitation and maintenance, ASTM STP 1348, 7-20.
Muhanna, A. S., Rahman, M. S., and Lambe, P. C. (1998). “Model for resilient modulus and permanent strain of subgrade soils.” Transportation Research Record, No. 1619, 85-93.
Owen, D. R. J., and Hinton, E. (1980). Finite Elements in Plasticity: Theory and Practice. Pineridge Press Limited, Swansea, U. K., 215-269.
PCA (1984). Thickness Design for Concrete Highway and Street Pavements. Portland Cement Association.
Puppala, A. J., Mohammad, L. N., and Allen, A. (1999). “Permanent deformation characterization of subgrade soils from RLT test.” Journal of Materials in Civil Engineering, 11(4), 274-282.
Quintus, H. V., and Killingsworth, B. (1998). “Analyses relating to pavement material characterizations and their effects on pavement performance.” FHWA-RD-97-085.
Salem, H. M., Bayomy, F. M., and Al-Taher, M. G. (2003). “Prediction of seasonal variation of subgrade resilient modulus using LTPP data.” TRB 2003 Annual Meeting CD-ROM, TRB 2003-001642.
White, T. D., Zaghloul, S. M., Anderton, G. L., and Smith, D. M. (1997). “Pavement analysis for moving aircraft load.” Journal of Transportation Engineering, ASCE, 123(6), 436-446.
Zaghloul, S., and White, T. (1992). “Use of three-dimensional dynamic finite element programe for analysis of flexible pavements.” Transportation Research Record, No. 1388, 60-69.