跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳昭穎
Chao Ying
論文名稱: TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究
The optical emission spectroscopic study of silicon thin film deposited by TE mode Electron Cyclotron Resonance Chemical Vapor Deposition
指導教授: 利定東
Tomi Li
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 98
中文關鍵詞: 矽薄膜電子迴旋共振化學氣相沉積電漿光譜光放射光譜儀
外文關鍵詞: ECR-CVD, OES, silicon thin film, plasma spectrum
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電漿放射光譜儀(Optical Emission Spectroscopy, OES)探測電子迴旋共振化學氣相沉積儀(ECR-CVD)之製程電漿光譜並試與沉積薄膜特性做對照分析找尋其相對關係。在不同電漿功率、操作壓力、溫度及氫稀釋濃度下利用電漿放射光譜儀(OES)探測不同本質矽薄膜製程中之關鍵電漿物種Si*(288nm)、SiH*(414nm)、Hβ*(486nm)、Hα*(656nm)之原始強度並與Ar比較其相對物種濃度變化;接著配合電漿光譜與沉積薄膜的特性及沉膜速率作對照分析。
    光譜探測結果發現在所有製程參數中以功率為最主要影響電子密度的因素,電子溫度則無太明顯變化,並且控制主磁場改變不同共振區間可得不同物種濃度分布;壓力部分,Ar光譜隨壓力增加六倍而下降90%,顯示電子密度會隨製程壓力增加而持續下降,電子溫度則隨製程壓力增加先劇烈下降5mtorr後逐漸趨緩;由薄膜沉積速率隨溫度下降可知ECR的沉膜反應屬於質傳限制反應;氫稀釋率部分,氫氣濃度愈高結晶現象越明顯且Hα*/SiH*>6.5微晶開始產生,氫離子的迴旋共振也對電漿解離造成影響。
    實驗可得,於45/12/22磁場組態下,功率1400W、壓力5mtorr、溫度350℃可得氫含量小於20%、R* <0.13的非晶矽薄膜。


    This study utilized Optical Emission Spectroscopy (OES) to diagnose the plasma spectrum by electron cyclotron resonance chemical vapor deposition (ECR-CVD) and tried to find out the relationship with the deposition properties. Under varying process setting , characterization by OES reveals the original intensity of the pivotal radicals spectrum: Si*(288nm), SiH*(414nm), Hβ*(486nm), Hα*(656nm). Moreover, we use the Actinometry technique to compare the species concentration with Ar’s and then analyze the thin film properties and the deposition rate with plasma spectrum.
    The result showed that power was the major effect of process parameters on plasma density, but not on the electron density. The different species distributions were obtained by controlling the main magnetic field. The Ar spectrum intensity decreased 90% with adding six times the pressure, which revealed that the electron density would decrease continually and the electron temperature tended to decrease seriously from 3mtorr to 5mtorr then at ease by increasing working pressure. Because of the deposition rate decreased followed by increasing the temperature, ECR belonged to mass transfer limited reaction. Since high hydrogen dilution ratio, the crystallization phenomenon was obvious and microcrystalline silicon started from Hα*/SiH* > 6.5. Incidentally, the cyclotron resonance of H+ will have an influence on plasma.
    Therefore, seeing from the experiments that the amorphous silicon film with CH < 20% and R* <0.13 could be obtained under 45/12/22, 1400W, 5mtorr, 350℃.

    第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 研究目的 5 第二章 文獻整理及基本回顧 6 2-1 電漿簡介 6 2-1-1 電漿原理及特性 6 2-1-2 磁場下帶電粒子運動行為 12 2-2 薄膜沉積 14 2-2-1 薄膜沉積原理 14 2-2-2 化學氣相沉積 (CVD) 17 2-3 矽薄膜介紹 26 2-4 光放射光譜儀用於矽薄膜製程之研究 34 第三章 實驗方法與設備 37 3-1 實驗方法 37 3-2 實驗步驟 38 3-3 實驗設備及原理 39 3-3-1 電子迴旋共振氣相沉積系統(Electron cyclotron resonance chemical vapor deposition , ECR-CVD) 39 3-3-2 光放射光譜儀OES 42 3-3-3 傅氏轉換紅外線光譜儀FTIR 45 3-3-4 表面厚度量測儀Dektak 47 3-3-5 拉曼光譜儀Raman Spectroscopy 48 第四章 結果與討論 49 4-1 功率 49 4-1-1功率對於電漿光譜之影響 49 4-1-2 功率對於薄膜品質與沉積速率之影響 55 4-2 製程壓力 57 4-2-1製程壓力對於電漿光譜之影響 57 4-2-2 製程壓力對於薄膜品質與沉積速率之影響 62 4-3 溫度 63 4-3-1溫度對於第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 研究目的 5 第二章 文獻整理及基本回顧 6 2-1 電漿簡介 6 2-1-1 電漿原理及特性 6 2-1-2 磁場下帶電粒子運動行為 12 2-2 薄膜沉積 14 2-2-1 薄膜沉積原理 14 2-2-2 化學氣相沉積 (CVD) 17 2-3 矽薄膜介紹 26 2-4 光放射光譜儀用於矽薄膜製程之研究 34 第三章 實驗方法與設備 37 3-1 實驗方法 37 3-2 實驗步驟 38 3-3 實驗設備及原理 39 3-3-1 電子迴旋共振氣相沉積系統(Electron cyclotron resonance chemical vapor deposition , ECR-CVD) 39 3-3-2 光放射光譜儀OES 42 3-3-3 傅氏轉換紅外線光譜儀FTIR 45 3-3-4 表面厚度量測儀Dektak 47 3-3-5 拉曼光譜儀Raman Spectroscopy 48 第四章 結果與討論 49 4-1 功率 49 4-1-1功率對於電漿光譜之影響 49 4-1-2 功率對於薄膜品質與沉積速率之影響 55 4-2 製程壓力 57 4-2-1製程壓力對於電漿光譜之影響 57 4-2-2 製程壓力對於薄膜品質與沉積速率之影響 62 4-3 溫度 63 4-3-1溫度對於電漿光譜之影響 63 4-3-2溫度變化對於薄膜品質與沉積速率之影響 66 4-4 氫稀釋濃度 68 4-4-1氫稀釋濃度對於電漿光譜之影響 68 4-4-2氫稀釋濃度對於薄膜品質與沉積速率之影響 71 第五章 結論 74 參考文獻 76 電漿光譜之影響 63 4-3-2溫度變化對於薄膜品質與沉積速率之影響 66 4-4 氫稀釋濃度 68 4-4-1氫稀釋濃度對於電漿光譜之影響 68 4-4-2氫稀釋濃度對於薄膜品質與沉積速率之影響 71 第五章 結論 74 參考文獻 76

    [1]黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
    [2]National renewable energy laboratory(USA), 2008, http://www.nrel.gov/.
    [3]Kenta Arima, Takushi Shigetoshi, Hiroaki Kakiuchi, Mizuho Morita, “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale”, Physica B, Vol 376–377, pp. 893–896, 2006.
    [4]Tomonori Nishimoto, Madoka Takai, Hiroomi Miyahara, Michio Kondo, Akihisa Matsuda, “Amorphous silicon solar cells deposited at high growth rate”, Journal of Non-Crystalline Solids, Vol 299–302, pp. 1116–1122, 2002.
    [5]Sanjay K. Ram, Laurent Kroely, Samir Kasouit, Pavel Bulkin, and Pere Roca , “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Phys. Status Solidi©, Vol 7, No. 3–4, pp. 553–556, 2010.
    [6]Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
    [7]羅正忠,半導體製程技術導論,歐亞出版社,2006年。
    [8]I. H. Hutchinson, Principles of Plasma Diagnostics 2nd, Cambridge University Press, 2002.
    [9]M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
    [10]莊達人,VLSI 製造技術,高立圖書有限公司,1996。
    [11]J. Venables, “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol 47, pp. 399, 1984.
    [12]Matsuda A, Takai M, Nishimoto T, et al. “Solar Energy &Solar Cells”, 2003,78,3
    [13]Akihisa Matsuda. “Thin-Film Silicon —Growth Process and Solar Cell Application”, J.J.A.P., Vol 43, pp. 7909–7920, 2004.
    [14]Yao Ruohe, Lin Kuixun, et al. “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, 1997
    [15]Kushner M J. “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, J.J.A.P., Vol 62, pp. 2803–2811, 1987.
    [16]Yoshinobu Kawai, et al. “Development of large diameter ECR plasma source”, Vacuum, Vol 84, pp. 1381–1384, 2010.
    [17]Tan Bi Song, Ma Zhi Bin, Wu Zhen Hui, “Measurement of microwave ECR oxygen plasma parameter”, Journal of Wuhan Institute of Technology, 2009.
    [18]Masayoshi Murata, Satoshi Uchida, Kengo Kishimoto, Masayoshi Tanaka, Akio Komori, and Yoshinobu Kawai, “ECR plasma CVD in Different Magnetic Field Configurations”, J.J.A.P., Vol 31, pp. 1499–1502, 1992.
    [19]Y Ueda, Y Inoue, S Shinohara and Y Kawai, “Deposition of large area amorphous silicon films by ECR plasma CVD”, Vacuum, Vol 48, pp. 119–122, 1997.
    [20]W.G.J.H.M. van Shark, “Methods of Deposition of Hydrogenated Amorphous Silicon Device Applications”, pp. 80–81, 2002.
    [21]Zhu Zu song ,Yin Xun Chang ,Zhu De Quan, et al. “Studying on the Electron Charateristic of Argon Plasma in the PECVD System”, Vacuum, Vol 84, pp. 1381–1384, 2010.
    [22]WANG Qing, BA Dechun, FENG Jian, “Diagnosis of the Argon Plasma in a PECVD Coating Machine”, Plasma Science and Technology, Vol 10, No. 6, 2008.
    [23]Triska, A., D. Dennison, and H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 392, 1975.
    [24]R.E. I. Schropp and M.Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology, Kluwer Academic, Boston, 1998.
    [25]John Robertson. “Growth mechanism of hydrogenated amorphous silicon” Journal of Non-Crystalline Solids, Vol 266-269, pp. 79–83, 2000.
    [26]H. F. Sterling, R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electron, Vol 8, pp. 653, 1965.
    [27]Staebler, D. L., Wronski, C. R., Appl. Phys. Lett. Vol. 31 (1977) 292-294
    [28]A. V Shah, J Meier, E Vallat-Sauvain, et al., “Material and solar cell research in microcrystalline silicon ”, Solar Energy Materials and Solar Cells, Vol 78, pp. 469, 2003.
    [29]O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MuK ck, B. Rech, H. Wagner, “Intrinsic microcrystalline silicon:A new material for photovoltaics”, Solar Energy Materials and Solar Cells, Vol 62, pp. 97, 2000.
    [30]Matsuda A., ”Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol 337, pp. 1, 1999.
    2-4OES
    [31]Huidong Yang, Chunya Wu, Junkai Huang, Ruiqin Ding et al., “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol 472, pp. 125–129, 2005.
    [32]P. Kumar, F. Zhu, A. Madan, “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol 33, pp. 3938–3944, 2008.
    [33]Shui-Yang Lien et al., “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol 357, pp.161–164, 2011.
    [34]Yusuke Fukuda, Yoshikazu Sakuma, Chisato Fukai, Yukihiro Fujimura, Kazufumi Azumab, Hajime Shirai, “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256–260, 2001.
    [35]H. L. Hsiao, H. L. Hwang, A. B. Yang, L. W. Chen, T. R. Yew, “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol 142, pp. 316–321, 1999.
    [36]Madoka Takai, Tomonori Nishimoto, Michio Kondo, and Akihisa Matsuda, “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Appl. Phys. Lett., Vol 77, pp. 18, 2000.
    [37]Zhimeng Wua, Jian Sun, Qingsong Lei, Ying Zhao, Xinhua Geng, Jianping Xi, “Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy”, Physica E, Vol 33, pp. 125–129, 2006.
    [38]Akihisa Matsuda, Madoka Takai, Tomonori Nishimoto, Michio Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials and Solar Cells, Vol 78, pp. 3–26, 2003.
    [39]Kimihiko Saito, Michio Kondo, “Investigation of crystalline orientation factor in microcrystalline silicon thin film deposition”, Phys. Status Solidi A, Vol 207, No. 3, pp. 535–538, 2010.
    [40]Masatishi Kitagawa, Kentaro Setsune, Yoshio Manabe, “Properties of Hydrogenated Amorphous Silicon Prepared by ECR Plasma CVD Method”, J.J.A.P., Vol 27, pp. 2026–2031, 1988.
    [41]P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. L. Jauberteau, J. Desmaison, and C. Dong, “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol 390, pp. 51–58, 2001.
    [42]Robertson, R., D. Hils, H. Catham, and A. Gallagher, “Laser plasma coupling in long pulse, long scale length plasmas”, Appl. Phys. Lett., Vol 43, pp. 54, 1983.
    [43] A. Francis, U. Czarnetzki, H. F. D?bele, and N. Sadeghi, “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Appl. Phys. Lett., Vol 71, pp. 3796, 1997.
    [44] 潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文 ,2008年。
    [45] Nishimoto Tomonori, Takai Madoka, Miyahara Hiroomi, Kondo Michio, Matsuda Akihisa, “Amorphous silicon solar cells deposited at high growth rate”, Journal Non-Crystalline Solids, Vol 299, pp. 1116–1122, 2002.
    [46] S. Guha, J. Yang, Scott J. Jones, Y. Chan and D.L. Williamson, “Effect of microvoids on initial and light?degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol 61, pp. 1444, 1992.
    [47] Q. Cheng, S. Xu, K.K. Ostrikov, “Localization and dynamic change of saponin in root tuber of cultivated Pseudostellaria heterophylla”, Nanotech, Vol 20, pp. 1, 2009.
    [48]田民波,薄膜技術與薄膜材料,五南出版社,2007年。

    QR CODE
    :::