| 研究生: |
曾聖凱 Sheng-Kai Zeng |
|---|---|
| 論文名稱: |
福衛二號絕對輻射校正及全球動態量程之建立 The Absolute Radiometric Calibration and Global Dynamic Range Construction for FORMOSAT-2 |
| 指導教授: |
林唐煌
Tang-Huang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 福衛二號遙測照相儀 、特定目標輻射校正 、相互輻射校正 、動態量程 、全球動態量程 |
| 外文關鍵詞: | FORMOSAT-2 remote sensing instrument, Vicarious calibration, Cross calibration, Dynamic range, Global gain map |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
福爾摩沙衛星二號(福衛二號)為我國第一顆遙測與科學用途之高解析度光學衛星,其搭載之光學酬載為遙測照相儀(Remote Sensing Instrument,RSI),具有4米的高空間解析度和8位元之輻射解析度。為維持光學酬載RSI之輻射品質,定期的在軌絕對輻射校正是不可或缺,亦即為本文之研究目標,包括特定目標及相互輻射校正。特定目標以國際上常用之美國內華達州為校正場址,透過地表反射率之實地量測,利用輻射傳送模式(6S),配合實際福衛二號影像之灰階值檢驗並校正其間之輻射轉換係數。在相互輻射校正方面,則以近同步觀測之 Landsat-8 OLI (Operational Land Imager)為參考影像進行校正。結果顯示,利用特定目標及相互輻射校正所獲之轉換係數與最新儀器校正數值之差異約±5%以內,符合國際上對於絕對輻射校正誤差的要求,代表本研究所建構之絕對輻射校正方法具相當可行性。
此外,RSI與一般高輻射解析度之光學感測器不同,RSI具有可根據地表反射特性調整動態量程(Dynamic Range)的功能,以有效地獲取高、低反射地區之整合觀測。因此,本研究根據MODIS (Moderate-Resolution Imaging Spectroradiometer)之全球地表反射率產品(MOD09)、太陽照射之幾何與福衛二號光學特性,透過輻射傳送模式(6S)模擬福衛二號RSI各頻段於大氣層頂所觀測之顯輻射率,並配合RSI儀器之輻射轉換模式,建構福衛二號各頻段之全球全球動態量程,除可避免RSI影像之輻射飽合或訊雜比過低外,亦可提升影像之輻射解析度。
FORMOSAT-2 satellite (FS-2) is the first Earth observation satellite equipped with delicate optical sensor operated by the National Space Organization (NSPO) in Taiwan. The main payload on FS-2 is Remote Sensing Instrument (RSI) with high spatial resolution (8 m) and 8-bits radiometric resolution. For any optical sensors, in-orbit radiometric calibration is essential for ensuring the accurate radiance observation. Therefore, the primary goal of this study is to construct the absolute radiometric calibration procedure including the vicarious-calibration by using field-measurement reflectance and the cross-calibration by applying Landsat-8 Operational Land Imager (OLI) image as a reference. Then, the desert areas in Nevada are also applied to be a calibration site in this study. In addition, the radiative transfer code, Second Simulation of the Satellite Signal in the Solar Spectrum (6S), is employed to drive the radiance RSI observing on the top of atmosphere. Furthermore, the radiometric conversion coefficients of RSI could be estimated based on the relationship between the retrieved radiance and the digital number. The results of this study show that the radiometric conversion coefficients are similar to the dim file in terms of the differences between them within ±5% for most part of spectral bands.
Moreover, an option of selecting gain factor is designed for RSI to subtly adjust the dynamic range of radiometric signal. This function make RSI can successfully acquire images in both dark and bright regions.
For this objective, the related 6S model input data such as solar geometry, RSI spectral response function and Moderate-Resolution Imaging Spectroradiometer (MODIS) global land surface reflectance product (MOD09) are employed to derive the potential ranges of reflected radiance on the top of atmosphere for each spectral band of FS-2 RSI. Eventually, the global map of dynamic range map for FS-2 RSI could be constructed with the calibrated radiometric coefficients to eliminate the saturation of output signal and enhance the target signal to noise ratio over bright and dark surfaces, respectively, as well as efficiently extent the radiometric resolution.
1. 吳岸明, & 張桂祥. (2014). 福衛二號影像處理系統研發之回顧與展望. 航測及遙測學刊, 18(1), 1-12.
2. 福爾摩莎衛星二號簡介,民105年12月15日,取自財團法人國家實驗研究院國家太空中心網頁: http://www.nspo.narl.org.tw/tw2015/projects/FORMOSAT-2/payloads.html
3. 廖敦佑(民105),福爾摩沙衛星二號遙測照相儀之在軌相互輻射校正。國立中央大學太空科學研究所碩士論文,中壢。
4. 林唐煌、劉振榮、李國光、林孟岳、張國恩、連偉宏和廖敦佑(民103),福爾摩沙五號衛星光學遙測酬載之在軌輻射校正先期規劃與研究,財團法人國家實驗研究院國家太空中心委託研究計畫(編號:NSPO-S-103077),未出版。
5. 林唐煌、劉振榮、廖敦佑和曾聖凱(民104),福爾摩沙五號光學遙測酬載之特定目標校正(Vicarious Calibration)與相互校正(Cross Calibration)方法之規劃與研究,財團法人國家實驗研究院國家太空中心委託研究計畫(編號:NSPO-S-104096),未出版。
6. 林唐煌、黃智遠、張智安、劉振榮、陳良健、曾聖凱、蕭閔中(民105),影像品質在軌率定作業,財團法人國家實驗研究院國家太空中心委託研究計畫(編號:NSPO-S-105068),未出版。
7. Alok Kumar Shrestha. (2010). Relative Gain Characterization and Correction for Pushbroom Sensors Based on Lifetime Image Statistics and Wavelet Filtering. South Dakota State University, U.S.A.
8. Akihide Kamei, Kazuki Nakamura, Hirokazu Yamamoto, Ryosuke Nakamura, Satoshi Tsuchida, Naotaka Yamamoto, Satoshi Sekiguchi, Soushi Kato, Cheng-Chien Liu, Kuo-Hsien Hsu, and An-Ming Wu. (2012). Cross Calibration of Formosat-2 Remote Sensing Instrument (RSI) Using Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), IEEE Transactions on Geoscience and Remote Sensing, 50(11), 4821-4830.
9. Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903.
10. Chern, J. S., & Lin, S. F. (2009). In-orbit performance verification of FORMOSAT-2---A look back. Journal of Aeronautics, Astronautics and Aviation. Series A, 41(3), 203-209.
11. CNES. (2011). Absolute Calibration of Formosat-2 Using Desert Site December 2011 Update.
12. CNES. (2014). Absolute Calibration of Formosat-2 Using Desert Site June 2014 Update.
13. Dinguirard, M., and S. P.N. (1999). Calibration of Space Multispectral Imaging Sensord: A Review, Remote Sensing of Enivironment, 68, 194-205.
14. Goward, S. N., Haskett, J., Williams, D., Arvidson, T., Gasch, J., Lonigro, R., Reeley, M., Irons, J., Dubayah, R., Turner, S., Campana, K., and Bindschadler, R. (1999). Enhanced Landsat capturing all the Earth's land 186 areas. EOS, 80 (26): 289, 293.
15. Hagolle, O., Goloub, P., Deschamps, P. Y., Cosnefroy, H., Briottet, X., Bailleul, T., & Herman, M. (1999). Results of POLDER in-flight calibration. IEEE transactions on geoscience and remote sensing, 37(3), 1550-1566.
16. Irish, Richard R. (2000). Landsat 7 science data users handbook. National Aeronautics and Space Administration, Report : 430-15.
17. J.-L. Roujean, M. Leroy, and P. Y. Deschamps. (1992). A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data. J. Geophys. Res., vol. 97, pp. 20455-20468.
18. Lin, T. H., Chen, A. J., Liu, G. R., & Kuo, T. H. (2002). Monitoring the atmospheric aerosol optical depth with SPOT data in complex terrain. International Journal of Remote Sensing, 23(4), 647-659.
19. Liu, J.-J., Li, Z., Qiao, Y.-L., Liu, Y.-J., & Zhang, Y.-X. (2004). A new method for cross-calibration of two satellite sensors. International Journal of Remote Sensing, 25 (23), 5267{5281.
20. Lin, T.-H., and G.-R. Liu, (2009). In-Orbit Radiometric Calibration of the FORMOSAT-2 RSI. Terrestrial Atmospheric and Oceanic Science, 20(6), 833-838.
21. Liu, C. C., Kamei, A., Hsu, K. H., Tsuchida, S., Huang, H. M., Kato, S., & Wu, A. M. (2010). Vicarious calibration of the Formosat-2 remote sensing instrument. IEEE Transactions on Geoscience and Remote Sensing, 48(4), 2162-2169.
22. M. Dinguirard and P. N. Slater. (1999). Calibration of space-multispectral imaging sensors: A review. Remote Sens. Environ., 68(3), 194–205.
23. NCAVEO. (n.d.). Control file. Retrieved December 7, 2015, from http://www.ncaveo.ac.uk/special_topics/atmospheric_correction/example1/6s_controlfile.php
24. Petty, Grant William. A first course in atmospheric radiation. Sundog Pub, 2006.
25. R. A. Barnes, R. E. Eplee, Jr., F. S. Patt, and C. R. McClain. (1999). Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements, Appl. Opt., 38(21), 4649–4664.
26. Strahler, A. H., Muller, J. P., Lucht, W., Schaaf, C. B., Tsang, T., Gao, F., & Barnsley, M. J. (1999). MODIS BRDF/albedo product: algorithm theoretical basis document version 5.0. MODIS documentation, 23(4), 42-47.
27. Sakuma, F., Ono, A., Tsuchida, S., Ohgi, N., Inada, H., Akagi, S., & Ono, H. (2005). Onboard calibration of the ASTER instrument. IEEE transactions on geoscience and remote sensing, 43(12), 2715-2724.
28. Shrestha, A. K. (2010). Relative Gain Characterization and Correction for Pushbroom Sensors Based on Lifetime Image Statistics and Wavelet Filtering.
29. Teillet, P. M., Slater, P. N., Ding, Y., Santer, R. P., Jackson, R. D., & Moran, M. S. (1990). Three methods for the absolute calibration of the NOAA AVHRR sensors in-flight. Remote sensing of Environment, 31(2), 105-120.
30. Teillet, P. M., Fedosejevs, G., & Thome, K. J. (2004). Spectral band difference effects on radiometric cross-calibration between multiple satellite sensors in the Landsat solar-reflective spectral domain. In Remote Sensing (pp. 307-316). International Society for Optics and Photonics.
31. Vermote, E., Tanré, D., Deuzé, J. L., Herman, M., & Morcrette, J. J., (1995). Second simulation of a satellite signal in the solar spectrum (6S). 6S User Guide Version, 1.
32. Vermote, E. F., Tanré, D., Deuze, J. L., Herman, M., & Morcette, J. J., (1997). Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE transactions on geoscience and remote sensing, 35(3), 675-686.
33. Vermote, E. F., & Vermeulen, A. (1999). Atmospheric correction algorithm: spectral reflectances (MOD09). ATBD version, 4.