| 研究生: |
賴承孝 CHENG-HSIAO LAI |
|---|---|
| 論文名稱: |
鈦基非晶填料應用於Ti-6Al-4V合金硬焊之微結構及機械性能研究 Interfacial microstructure and shear strength of Ti-6Al-4V alloy joints vacuum brazed with Ti-based amorphous filler |
| 指導教授: |
鄭憲清
SHIAN-CHING JANG |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 鈦基合金 、非晶填料 、真空硬焊 、顯微組織 |
| 外文關鍵詞: | Ti-based alloy, Amorphous filler, Vacuum brazing, Microstructure |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係使用本實驗室開發之Ti42Zr35Ta3Si5Sn2.5Co12.5無毒性、生物相容性佳鈦基非晶粉末,作為Ti-6Al-4V的硬焊填料進行真空硬焊。本研究分別進行了1000℃、1050℃及1100℃不同溫度的真空硬焊,可發現本非晶填料之黏度相當高,不利毛細作用將熔融填料滲入接合間隙,但使用夾心式的填料方式可得到良好的接合表面。拉伸試驗結果發現剪力強度與溫度呈正相關,在1100℃持溫45分鐘的條件下可得到最佳的剪力強度170MPa。在金相及SEM/EDS分析的部分可發現1050℃時焊道與母材之間有明顯的反應層,且組織係由α-Ti、β-Ti及Ti基介金屬化合物所組成,而1100℃下基本上皆已看不到反應層,可看到粗大的β-Ti晶界上析出針狀的α-Ti。破斷面的部分可觀察到皆為窩穴狀的韌性破斷,並無因介金屬化合物析出而造成脆性破斷。
Ti42Zr35Ta3Si5Sn2.5Co12.5 is a novel amorphous materials, which has non-toxic property and high biocompatibility in human body. In this research, this novel materials was used as the brazing filler for Ti-6Al-4V for vacuum brazing. Vacuum brazing was carried out at different temperatures of 1000 °C, 1050 °C and 1100 °C. It can be found that the viscosity of the molten amorphous filler is quite high, which is difficult for capillary action to penetrate into the joint clearance. However, a good joint can be obtained by using a sandwich-type filling method. The tensile test results show that the shear strength is positively correlated with the temperature, and the best shear strength of 170MPa can be obtained at 1100℃ for 45 minutes. It can be found that there is an obvious reaction layer between the weld bead and the base metal at 1050 ℃, and the microstructure is composed of α-Ti, β-Ti and Ti-based intermetallic compounds. While 1100℃, needle-like α-Ti could be found on the coarse β-Ti grain boundary. All the ductile fractures in the shape of dimple can be observed in the fractured surface, and there is no brittle fracture caused by the precipitation of intermetallic compounds.
1. 张启运, 庄鴻寿, 钎焊手冊. 1998.
2. 蘇程裕, 周長彬, 吳柏成, 劉茂賢, 真空硬銲的原理與應用. 工程材料, 1996. 120: p. 58-62.
3. Schwartz, Mel M., BRAZING. 1995.
4. David M. Jacobson, Giles Humpston, Principles of brazing. 2005.
5. 紹家生, 許志榮, 初雅杰, 陳光, 非晶態焊接材料的特性及其應用. 材料導報, 2004. 04: p. 17-19
6. Lund, A.C., Schuh, C.A. Topological and chemical arrangement of binary alloys during severe deformation. Journal of Applied Physics, 2004. 95(9): p. 4815-4822.
7. 邱垂泓, 吳學陞, 非晶質金屬材料簡介. 工業材料雜誌, 2014. 325: p. 137-148
8. Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000. 48(1): p. 279-306.
9. Turnbull., D., Under what conditions can a glass be formed. Contemporary Physics, 1969. 10: p. 473.
10. Wang, H., Bulk metallic glass composites. Journal of Materials Science & Technology, 2005. 21: p. 86-90.
11. Inoue, A., T. Zhang, T. Masumoto, Zr-Al-Ni Amorphous-Alloys With High Glass-Transition Temperature And Significant Supercooled Liquid Region. Materials Transactions Jim, 1990. 31(3): p. 177-183.
12. Wang H., Dong C., SHEK CH, Bulk Metallic Glasses. 2004.
13. Waniuk, T.A., J. Schroers, and W.L. Johnson, Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys. Applied Physics Letters, 2001. 78(9): p. 1213-1215.
14. Inoue, A., Zhang, W., Zhang, T., Kurosaka, K., High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Materialia, 2001. 49(14): p. 2645-2652.
15. Inoue, A., Zhang, W., Zhang, T., Kurosaka, K., Formation and mechanical properties of Cu-Hf-Ti bulk glassy alloys. Journal of Materials Research, 2001. 16(10): p. 2836-2844.
16. Lu, Z.P., C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): p. 3501-3512.
17. Du, X.H., Huang, J. C., Liu, C. T., Lu, Z. P., New criterion of glass forming ability for bulk metallic glasses. Journal of Applied Physics, 2007. 101(8): p. 3.
18. G.N.Jackson, R.F. sputtering. Thin Solid Films, 1970. 5: p. 209-246.
19. Chapra, K.L., Thin Film Phenomena., 1969.
20. Si, C.R., Tang, X. L., Zhang, X. J., Wang, J. B., Wu, W. C., Characteristics of 7055A1 alloy powders manufactured by gas-solid two-phase atomization: A comparison with gas atomization process. Materials & Design, 2017. 118: p. 66-74.
21. Inoue, A., Bulk Amorphous Alloys - Practical Characteristics and Applications. 1999.
22. 王翠玲, 吳玉萍, 非晶合金的優異性能及應用. 煤礦機械, 2005. 2: p. 74-77
23. Inoue, A., Shen, B. L., Yavari, A. R., Greer, A. L., Mechanical properties of Fe-based bulk glassy alloys in Fe-B-Si-Nb and Fe-Ga-P-C-B-Si systems. Journal of Materials Research, 2003. 18(6): p. 1487-1492.
24. I. Okamoto, T.T., K. Den, Vacuum Brazing of Aluminum Using Al-12Si System Filler Alloy. Weld. Res. Inst., 1976. 5: p. 97-98.
25. Way, M., Willingham, J., Goodall,, Brazing filler metals. International Materials Reviews, 2019. 65(5): p. 257-285.
26. Aminazad AM, H.A., Ghasimakbari F., Investigation on corrosion behaviour of copper brazed joints. Procedia Mater Sci., 2015: p. 672–678.
27. Lugscheider, E., S. Humm, High-temperature brazing of superalloys and stainless steels with novel ductile Ni-Hf-based filler metals. Advanced Engineering Materials, 2002. 4(3): p. 138-142.
28. Leone, E.A., A. Rabinkin, B. Sarna, Microstructure of thin-gauge austenitic and ferritic stainless steel joints brazed using Metglas (R) amorphous foil. Journal of Advanced Materials, 2006. 38(2): p. 28-39.
29. Yu, W.Y., W.J. Lu, T.D. Xia, Formation Process of Joints Brazing with Amorphous Filler Metal. Rare Metal Materials and Engineering, 2013. 42(4): p. 688-691.
30. Pang, S.J., Sun, L. L., Xiong, H. P., Chen, C., Liu, Y., Li, H. F., Zhang, T., A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy. Scripta Materialia, 2016. 117: p. 55-59.
31. Sun, L.L., Xiong, H. P., Chen, C., Liu, Y., Li, H. F., Zhang, T., A Ti-Zr-Cu-Ni-Co-Fe-Al-Sn amorphous filler metal for improving the strength of Ti-6Al-4V alloy brazing joint. Progress in Natural Science-Materials International, 2017. 27(6): p. 687-694.
32. Xia, Y.Q., Li, P., Hao, X. H., Dong, H. G., Interfacial microstructure and mechanical property of TC4 titanium alloy/316L stainless steel joint brazed with Ti-Zr-Cu-Ni-V amorphous filler metal. Journal of Manufacturing Processes, 2018. 35: p. 382-395.
33. Xia, Y.Q., H.G. Dong, P. Li, Brazing TC4 titanium alloy/316L stainless steel joint with Ti50-xZrxCu39Ni11 amorphous filler metals. Journal of Alloys and Compounds, 2020. 849: p. 12
34. Cai, Y.S., Liu, R. C., Zhu, Z. W., Cui, Y. Y., Yang, R., Effect of brazing temperature and brazing time on the microstructure and tensile strength of TiAl-based alloy joints with Ti-Zr-Cu-Ni amorphous alloy as filler metal. Intermetallics, 2017. 91: p. 35-44.
35. Graham, H.L.a.C., Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions. IEEE Transactions on Magnetics, 1976. 12: p. 921-923.
36. Shi, J.M., Zhang, L. X., Pan, X. Y., Tian, X. Y., Feng, J. C., Microstructure evolution and mechanical property of ZrC-SiC/Ti6Al4V joints brazed using Ti-15Cu-15Ni filler. Journal of the European Ceramic Society, 2018. 38(4): p. 1237-1245.
37. Xia, Y.Q., Dong, H. G., Zhang, R. Z., Wang, Y. Q., Hao, X. H., Li, P., Dong, C., Interfacial microstructure and shear strength of Ti6Al4V alloy/316 L stainless steel joint brazed with Ti33.3Zr16.7Cu50-xNix amorphous filler metals. Materials & Design, 2020. 187: p. 11.
38. Tsung-Hsiung, L., Development and fabrication of the bio-compatible Ti-based metallic glass powders for additive manufacturing. 國立中央大學博士論文, 2019.
39. Shi, H.J., et al., Effect of Zr addition on the interfacial reaction of the SiC joint brazed by Inconel 625 powder filler. Journal of the European Ceramic Society, 2021. 41(13): p. 6238-6247.
40. ASM International, T.B.M., H. Okamoto, Binary Alloy Phase Diagrams 2nd. 1990.
41. Xue, Y. and H.M. Wang, Microstructure and wear properties of laser clad TiCo/Ti2CO intermetallic coatings on titanium alloy. Applied Surface Science, 2005. 243(1-4): p. 278-286.
42. M. Bermingham, S.D.M., M. S. Dargusch, D. H. StJohn, Microstucture of cast titanium alloys. Materials Forum, 2007. 31.
43. Ganjeh, E., H. Sarkhosh, Microstructural, mechanical and fractographical study of titanium-CP and Ti-6Al-4V similar brazing with Ti-based filler. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2013. 559: p. 119-129.
44. Lee, M.K., J.G. Lee, Mechanical and corrosion properties of Ti-6Al-4V alloy joints brazed with a low-melting-point 62.7Zr-11.0Ti-13.2Cu-9.8Ni-3.3Be amorphous filler metal. Materials Characterization, 2013. 81: p. 19-27.
45. Liang, Y.Z., Kong, J., Dong, K. W., Song, X. X., Liu, X. K., Zhu, R., Microstructure evolution and mechanical properties of vacuum brazed ZrO2/Ti-6Al-4V joint utilizing a low-melting-point amorphous filler metal. Vacuum, 2021. 192: p. 12.
46. Liu, Y.H., Hu, J. D., Shen, P., Han, X. H., Li, J. C., Microstructural and mechanical properties of jointed ZrO2/Ti-6Al-4V alloy using Ti33Zr17Cu50 amorphous brazing filler. Materials & Design, 2013. 47: p. 281-286.