| 研究生: |
趙鴻儒 Hung-Ju Chao |
|---|---|
| 論文名稱: |
群試迴歸模型中D-最適設計之理論極限 Theoretical Limits of $D$-Optimal Design in Group Testing Regression Models |
| 指導教授: |
黃世豪
Shih-Hao Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 互補雙對數鏈結函數 、D-最適設計 、群組試驗 、群試迴歸模型 |
| 外文關鍵詞: | Complementary Log-Log Link Function, D-Optimal Design, Group Testing, Group Testing Regression Model |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在公共衛生及流行病學中,相較於傳統個別試驗,群組試驗透過合併樣本檢測,有助於針對低盛行率疾病之研究能降低成本與誤差風險。在群組試驗中,群組大小與群組中個體自變數的分佈,會顯著影響群試迴歸模型參數估計的有效性。在實務中,研究者僅能將個體樣本分組,無法完全控制自變數於組間及組內的分佈。鑑於此,本論文探討群試迴歸模型在「理想情況」下的最適設計問題,藉由指定自變數之分佈,以達到參數估計變異的理論下界。當群組大小固定且只有一個自變數時,本研究刻劃了使用互補雙對數 (complementary log-log, cloglog) 鏈結函數的群試迴歸模型之D-最適設計的理論特徵。對於多變數的情況,我們利用隨機交換演算法來尋找最適設計。最後,我們探討群組試驗結構對 cloglog 模型下最適設計的影響,並與傳統個別試驗情境進行比較。
In public health and epidemiology, compared to traditional individual testing, group testing offers a cost-effective and error-reducing approach for screening low-prevalence diseases. In group testing, the group size and the distribution of individual covariates both within and between groups can greatly influence the efficiency of parameter estimation in group-testing regression models.
In practical applications, researchers are able to assign individual samples into groups but have limited control over the covariate distributions within or across these groups. In light of this, we explore the optimal design problem for group-testing regression models in this thesis, under an idealized framework where covariate distributions are specified to achieve the theoretical lower bound of estimator variance.
When the group size is fixed and only a single covariate is involved, we derive the theoretical properties of the D-optimal design for a group-testing regression model using a complementary log-log (cloglog) link function. For models involving multiple covariates, the randomized-exchange algorithm is employed to obtain optimal designs. Finally, we analyze how various group structures impact the optimal designs under the cloglog model and compare these findings with those obtained under the conventional individual-testing setting.
Cardoso, M., Koerner, K., & Kubanek, B. (1998). Mini-pool screening by nucleic acid testing
for hepatitis B virus, hepatitis C virus, and HIV: Preliminary results. Transfusion,
38, 905–907.
Chen, P., Tebbs, J. M., & Bilder, C. R. (2009). Group testing regression models with
fixed and random effects. Biometrics, 65, 1270–1278.
Cherif, A., Grobe, N., Wang, X., & Kotanko, P. (2020). Simulation of pool testing to
identify patients with coronavirus disease 2019 under conditions of limited test
availability. JAMA Network Open, 3, e2013075.
Dorfman, R. (1943). The detection of defective members of large populations. Annals of
Mathematical Statistics, 14, 436–440.
Farrington, C. (1992). Estimating prevalence by group testing using generalized linear
models. Statistics in Medicine, 11, 1591–1597.
Ford, I., Torsney, B., & Wu, C. J. (1992). The use of a canonical form in the construction
of locally optimal designs for non-linear problems. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 54, 569–583.
Harman, R., Filová, L., & Richtárik, P. (2020). A randomized exchange algorithm for
computing optimal approximate designs of experiments. Journal of the American
Statistical Association, 115, 348–361.
Kiefer, J. (1974). General Equivalence Theory for Optimum Designs (Approximate Theory).
The Annals of Statistics, 849–879.
Kline, R. L., Brothers, T. A., Brookmeyer, R., Zeger, S., & Quinn, T. (1989). Evaluation of
human immunodeficiency virus seroprevalence in population surveys using pooled
sera. Journal of Clinical Microbiology, 27, 1449–1452.
McCullagh, P., & Nelder, J. A. (2019). Generalized linear models. Routledge, London.
McMahan, C. S., Tebbs, J. M., & Bilder, C. R. (2012). Informative dorfman screening.
Biometrics, 68, 287–296.
Pukelsheim, F. (2006). Optimal design of experiments. Philadelphia, PA, SIAM.
Tu, X. M., Litvak, E., & Pagano, M. (1995). On the informativeness and accuracy of pooled
testing in estimating prevalence of a rare disease: Application to HIV screening.
Biometrika, 82, 287–297.
Vansteelandt, S., Goetghebeur, E., & Verstraeten, T. (2000). Regression models for disease
prevalence with diagnostic tests on pools of serum samples. Biometrics, 56, 1126–
1133.
Verstraeten, T., Farah, B., Duchateau, L., & Matu, R. (1998). Pooling sera to reduce the
cost of HIV surveillance: A feasibility study in a rural Kenyan district. Tropical
Medicine and International Health, 3, 747–750.
W.H.O. (1994). Global programme on AIDS—Operational characteristics of commercially
available assays to detect antibodies to HIV-1 and/or HIV-2 in human sera. Technical
Report 8. World Health Organization. Geneva.
Yelin, I., Aharony, N., Tamar, E. S., Argoetti, A., Messer, E., Berenbaum, D., Shafran,
E., Kuzli, A., Gandali, N., Shkedi, O., et al. (2020). Evaluation of COVID-19 RTqPCR
test in multi sample pools. Clinical Infectious Diseases, 71, 2073–2078.