跳到主要內容

簡易檢索 / 詳目顯示

研究生: 趙鴻儒
Hung-Ju Chao
論文名稱: 群試迴歸模型中D-最適設計之理論極限
Theoretical Limits of $D$-Optimal Design in Group Testing Regression Models
指導教授: 黃世豪
Shih-Hao Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 54
中文關鍵詞: 互補雙對數鏈結函數D-最適設計群組試驗群試迴歸模型
外文關鍵詞: Complementary Log-Log Link Function, D-Optimal Design, Group Testing, Group Testing Regression Model
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在公共衛生及流行病學中,相較於傳統個別試驗,群組試驗透過合併樣本檢測,有助於針對低盛行率疾病之研究能降低成本與誤差風險。在群組試驗中,群組大小與群組中個體自變數的分佈,會顯著影響群試迴歸模型參數估計的有效性。在實務中,研究者僅能將個體樣本分組,無法完全控制自變數於組間及組內的分佈。鑑於此,本論文探討群試迴歸模型在「理想情況」下的最適設計問題,藉由指定自變數之分佈,以達到參數估計變異的理論下界。當群組大小固定且只有一個自變數時,本研究刻劃了使用互補雙對數 (complementary log-log, cloglog) 鏈結函數的群試迴歸模型之D-最適設計的理論特徵。對於多變數的情況,我們利用隨機交換演算法來尋找最適設計。最後,我們探討群組試驗結構對 cloglog 模型下最適設計的影響,並與傳統個別試驗情境進行比較。


    In public health and epidemiology, compared to traditional individual testing, group testing offers a cost-effective and error-reducing approach for screening low-prevalence diseases. In group testing, the group size and the distribution of individual covariates both within and between groups can greatly influence the efficiency of parameter estimation in group-testing regression models.
    In practical applications, researchers are able to assign individual samples into groups but have limited control over the covariate distributions within or across these groups. In light of this, we explore the optimal design problem for group-testing regression models in this thesis, under an idealized framework where covariate distributions are specified to achieve the theoretical lower bound of estimator variance.
    When the group size is fixed and only a single covariate is involved, we derive the theoretical properties of the D-optimal design for a group-testing regression model using a complementary log-log (cloglog) link function. For models involving multiple covariates, the randomized-exchange algorithm is employed to obtain optimal designs. Finally, we analyze how various group structures impact the optimal designs under the cloglog model and compare these findings with those obtained under the conventional individual-testing setting.

    摘要 i Abstract ii 誌謝 iv 目錄 v 一、緒論 1 二、模型介紹以及最適設計準則 4 2.1 互補雙對數迴歸模型................................................... 4 2.2 群試cloglog 迴歸模型.................................................. 5 2.3 群試迴歸設計問題及準則............................................. 8 三、群組試驗下的理論最適設計 11 3.1 簡單模型之最適設計... 11 3.2 複雜模型的最適設計搜尋演算法... 14 四、模擬實驗 16 4.1 模擬設定... 16 4.2 模擬實驗一... 18 4.2.1 基準情境:群組大小k = 5 下之模擬策略分析... 19 4.2.2 低群組規模下之設計策略效率評估(k = 2) ... 22 4.2.3 高群組規模下之設計策略效率評估(k = 8) ... 25 4.2.4 群組大小對D-最適設計效率之影響... 28 4.3 模擬實驗二... 29 五、結論 33 附錄 35 附錄A 相關理論證明 35 A.1 訊息矩陣推導... 35 A.2 定理2 證明... 37 附錄B REX 演算法之機制與實作細節 39 B.1 演算法的事前參數設定和定義... 39 B.2 LBE (Leading Böhning Exchange) 步驟... 40 B.2.1 作用子空間之選取與建立... 41 B.2.2 子空間內之權重交換策略... 42 參考文獻 43

    Cardoso, M., Koerner, K., & Kubanek, B. (1998). Mini-pool screening by nucleic acid testing
    for hepatitis B virus, hepatitis C virus, and HIV: Preliminary results. Transfusion,
    38, 905–907.

    Chen, P., Tebbs, J. M., & Bilder, C. R. (2009). Group testing regression models with
    fixed and random effects. Biometrics, 65, 1270–1278.

    Cherif, A., Grobe, N., Wang, X., & Kotanko, P. (2020). Simulation of pool testing to
    identify patients with coronavirus disease 2019 under conditions of limited test
    availability. JAMA Network Open, 3, e2013075.

    Dorfman, R. (1943). The detection of defective members of large populations. Annals of
    Mathematical Statistics, 14, 436–440.

    Farrington, C. (1992). Estimating prevalence by group testing using generalized linear
    models. Statistics in Medicine, 11, 1591–1597.

    Ford, I., Torsney, B., & Wu, C. J. (1992). The use of a canonical form in the construction
    of locally optimal designs for non-linear problems. Journal of the Royal Statistical
    Society Series B: Statistical Methodology, 54, 569–583.

    Harman, R., Filová, L., & Richtárik, P. (2020). A randomized exchange algorithm for
    computing optimal approximate designs of experiments. Journal of the American
    Statistical Association, 115, 348–361.

    Kiefer, J. (1974). General Equivalence Theory for Optimum Designs (Approximate Theory).
    The Annals of Statistics, 849–879.

    Kline, R. L., Brothers, T. A., Brookmeyer, R., Zeger, S., & Quinn, T. (1989). Evaluation of
    human immunodeficiency virus seroprevalence in population surveys using pooled
    sera. Journal of Clinical Microbiology, 27, 1449–1452.

    McCullagh, P., & Nelder, J. A. (2019). Generalized linear models. Routledge, London.

    McMahan, C. S., Tebbs, J. M., & Bilder, C. R. (2012). Informative dorfman screening.
    Biometrics, 68, 287–296.

    Pukelsheim, F. (2006). Optimal design of experiments. Philadelphia, PA, SIAM.

    Tu, X. M., Litvak, E., & Pagano, M. (1995). On the informativeness and accuracy of pooled
    testing in estimating prevalence of a rare disease: Application to HIV screening.
    Biometrika, 82, 287–297.

    Vansteelandt, S., Goetghebeur, E., & Verstraeten, T. (2000). Regression models for disease
    prevalence with diagnostic tests on pools of serum samples. Biometrics, 56, 1126–
    1133.

    Verstraeten, T., Farah, B., Duchateau, L., & Matu, R. (1998). Pooling sera to reduce the
    cost of HIV surveillance: A feasibility study in a rural Kenyan district. Tropical
    Medicine and International Health, 3, 747–750.

    W.H.O. (1994). Global programme on AIDS—Operational characteristics of commercially
    available assays to detect antibodies to HIV-1 and/or HIV-2 in human sera. Technical
    Report 8. World Health Organization. Geneva.

    Yelin, I., Aharony, N., Tamar, E. S., Argoetti, A., Messer, E., Berenbaum, D., Shafran,
    E., Kuzli, A., Gandali, N., Shkedi, O., et al. (2020). Evaluation of COVID-19 RTqPCR
    test in multi sample pools. Clinical Infectious Diseases, 71, 2073–2078.

    QR CODE
    :::