跳到主要內容

簡易檢索 / 詳目顯示

研究生: 顏兆萱
Chao-Hsuan Yen
論文名稱: 全膝關節置換手術導引系統
The surgical navigation system for total knee replacement
指導教授: 曾清秀
Ching-Shiow Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 55
中文關鍵詞: 全膝關節置換手術導引骨科手術
外文關鍵詞: total knee replacement, surgical navigation, orthopedic surgery
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳統的全膝關節置換手術中,醫師憑藉本身的臨床經驗進行手術,過程中難以掌握器械之定位精確度,也因此影響手術品質。本研究發展一套非影像式之膝關節置換手術導引系統,整合一光學式定位裝置,再配合傳統手術所使用之手術器械,可以在術中提供手術器械與各個切除面之間的方位關係,並即時顯示於電腦螢幕之中,使醫師能夠據以準確地切削出膝關節的各個切除面,達成正確安裝人工關節之目的。
    本研究主要可分為三部份:方位轉換校準、切除面之決定、與手術導引。在方位轉換校準方面,利用膝關節之力學與運動學模型定義股骨與脛骨座標系統,並配合正交向量對應法,求取各座標系統之間的轉換關係。在切除面之決定方面,利用所定義之座標系統,加上量測股骨與脛骨外型上之解剖特徵,決定出各切除面之方位與切除深度。在手術導引方面,將欲切除面與手術器械之空間方位對應關係投影至兩個不同的平面,並即時顯示在電腦螢幕上,以協助醫師正確定位切除規並切削出切除面。
    本研究所發展之系統,經過兩次以Sawbone模擬膝關節置換手術的實驗。實驗假設髁間隆凸中點之量測誤差小於3mm,踝關節中心之量測誤差小於5mm,則脛骨近端切除面的角度誤差小於1.15°;若假設膝關節中心之量測誤差小於10mm,則股骨遠端切除面的角度誤差將小於1.86°;又假設內外髁後側的X座標之量測誤差小於2mm,則股骨前後斜切除面的角度誤差小於2.53°。上述定位誤差量可符合實際膝關節置換手術之要求。


    None

    目 錄 摘 要 I 目 錄 II 圖 目 錄 V 表 目 錄 VIII 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 1 1-3 研究方法 3 1-4 論文介紹 4 第二章 系統架構 5 2-1 硬體架構 5 2-1-1 光學式定位裝置 6 2-1-2 手術器械 9 2-2 軟體架構 10 第三章 全膝關節置換術定位導引 14 3-1 系統作業流程 14 3-2 座標系統定義 20 3-3 方位轉換校準 22 3-3-1 轉換矩陣 22 3-3-2 座標系統間的轉換關係 23 3-3-3 股骨座標系統與股骨DRF座標系統間的轉換關係 24 3-3-4 脛骨座標系統與脛骨DRF座標系統間的轉換關係 26 3-4 關節運動描述 27 3-4-1 內翻與外翻 27 3-4-2 彎曲與伸直 28 3-4-3 內轉與外轉 29 3-5 股骨植入物尺寸決定 29 3-6 切除面決定 31 3-6-1 脛骨近端切除面之決定 31 3-6-2 股骨遠端切除面之決定 31 3-6-3 股骨前後斜切除面之決定 32 第四章 結果與討論 34 4-1 誤差分析 34 4-1-1 脛骨近端切除面之誤差 34 4-1-2 股骨遠端切除面之誤差 36 4-1-3 股骨前後斜切除面之誤差 40 4-1-4 膝關節運動描述之誤差 42 4-2 模型切除實驗 44 第五章 結論 51 參考文獻 53

    [1] AESCULAP AG & CO. KG, Germany, http://www.orthopilot.com/
    [2] BrainLAB , Germany,
    http://www.brainlab.com/scripts/website_frame_english.asp?language=E
    [3] Craig, J. J., Introduction to Robotics Mechanics and Control 2nd Ed., Addison Wesley, Chapter 2, 1989.
    [4] DE Steiger, R.N., Leung, A., “The inter-operative accuracy of the trans epicondylar axis using computer assisted surgery.”, 4th Annual Meeting of CAOS-International Proceedings, pp.80-81, 2004.
    [5] Integrated Surgical Systems, Inc.,
    http://www.robodoc.com/eng/robodoc.html
    [6] Jakopec, M., Harris, S. J., Rodriguezy, B. F., et. al., “The First Clinical Application of a “Hands-On” Robotic Knee Surgery System,” Computer Aided Surgery, Vol. 6, pp. 329-339, 2001.
    [7] Jakopec, M., Harris, S. J., Rodriguezy, B. F., et. al., “Acrobot : a “Hands-On” Robot for Total Knee Replacement Surgery,” Advanced Motion Control, 7th International Workshop, pp. 116-120, 2002.
    [8] Jakopec, M., Rodriguezy, B. F., Harris, S. J., et. al., “The Hands-On Orthopaedic Robot “Acrobot” : Early Clinical Trials of Total Knee Replacement Surgery,” IEEE Trans. on Robotics and Automation, Vol. 19, No. 5, pp. 902-911, 2003.
    [9] Jenny, J. Y., Boeri, C., “Computer-Assisted Implantation of Total Knee Prosthesis : A Case-Control Comparative Study with Classical Instrumentation,” Computer Aided Surgery. Vol. 6, pp. 217-220, 2001.
    [10] Jenny, J. Y., Boeri, C., “Unicompartmental knee prosthesis implantation with a non-image-based navigation system: rationale, technique, case-control comparative study with a conventional instrumented implantation,” Knee Surg Sports Traumatol Arthrosc. Vol. 11, pp. 40-45, 2003.
    [11] Kienzle, T. C., Stulberg, S. D., Peshkin, M., et. al., “Total knee replacement : Computer assisted surgical system uses a calibrated bobot,” IEEE Eng Med Biol Vol. 12, pp. 301-306, 1995.
    [12] Lewis, J. L., Lew, W. D., “A method for locating an optimal ‘fixed’ axis of rotation for the human knee joint,” Trans. ASME, J. Biomech. Eng. Vol. 100, pp. 187-193, 1978.
    [13] Medtronic Inc., U.S.A., http://www.stealthstation.com/index.jsp
    [14] Mensch, J. S., Amstutz, H. C., “Knee morphology as a guide to knee replacement,” Clin. Orthop. Rel. Res. Vol. 112, pp. 231-241, 1975.
    [15] Morrison D. F., Applied Linear Statistical Methods., Prentice-Hall, pp.57-72, 1983.
    [16] Murphy, S., Gobezie, R., “Image-Guided Surgical Navigation : Basic Principles and Applications to Reconstructive Surgery,” the Orthopaedic Journal at Harvard Medical School, pp. 68-70, 2002.
    [17] Nofrini, L., Martelli, S., Iacono, F., “In vivo evaluation of a computer planning system for total knee arthroplasty,” Computer Methods and Programs in Biomedicine Vol. 73, pp. 71-81, 2004.
    [18] Pamela, K. L., Cynthia C. N., Joint Structure and Function – A Comprehensive Analysis 3rd Ed., F. A. Davis Company, pp.290-402, 1989.
    [19] Pennock, G. R., Clark, K. J., “An anatomy-based coordinate system for the description of the kinematic displacements in the human knee,” J. Biomechanics Vol. 23, pp. 1209-1218, 1990.
    [20] Schroeder, W. J., Martin, K. M., The Visualization Toolkit 3nd Ed., Kitware, Inc., 1999.
    [21] Siebert W., Mai S., Kober R., et. al., “Technique and first clinical results of robot-assisted total knee replacement,” The Knee, Vol. 9, pp. 173- 180, 2002.
    [22] Wolfgang Müller-Wittig, Uli Bockholt, Gerrit Voß, “A Computer Assisted Planning System for Total Knee Replacement,” Computer Graphik topics, pp. 17-19, 2000.
    [23] 林俊杰, “腦部手術用導引系統之方位校準及腦瘤影像分割”, 碩士論文, 中央大學機械工程研究所, 2002.

    QR CODE
    :::