跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳耑任
Chuan-jen Chen
論文名稱: 債劵投資組合之因素模型的VaR計算
指導教授: 傅承德
Cheng-der Fuh
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 信用計量模型因素模型
外文關鍵詞: CreditMrtrics, Factor Model
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今的風險管理上,債劵投資組合所關心的不再僅僅是違約風險 (default
    risk),更需要探討的是其信用風險 (credit risk)。風險值 (Value-at-Risk) 是一個廣泛應用的風險測量指標,在本篇論文,我們使用信用計量模型(CreditMetricsmodel ) 來評估債劵投資組合的風險值。然而,當債劵投資組合極其龐大且複雜時,估計風險值是困難的。因此,運用維度簡化的方法 (dimesional reduction technique) 來減少所需生成之隨機變數是必要的。在此引入因素模型 (factor model ) 來解決維度簡化的問題,並在最後觀察其簡化前後風險值有無明顯的差異。


    Under current risk management, a bond portfolio is not only concerned about
    the default risk, but also needs to study its credit risk. Value-at-Risk (VaR) is used
    commonly in risk measurement. In this paper, we apply the CreditMetrics model to assess the VaR of the portfolio of bonds. However, it is hard to assess VaR as the portfolio of bonds is extremely large and complicated. Therefore, using the technique of dimension reduction is needed to reduce the required number of random variables. Here, we introduce the factor model to solve the problem of
    dimension reduction. Finally, we also note the difference of VaR before and after
    this reduction.

    目錄 摘要 i Abstract ii 目錄 iii 圖目錄 iv 表目錄 v 第一章 緒論 1 第二章 信用計量模型 2 2.1 轉移矩陣 2 2.2 信評門檻 5 2.3 債劵投資組合 8 2.3.1 違約回收率 9 2.3.2 風險值 11 第三章 因素模型 12 3.1 線性因素模型 12 3.2 主因子成分方法 13 3.3 PCA應用於因素模型 15 第四章 模擬研究 16 4.1 模擬研究一 16 4.2 模擬研究二 28 第五章 結論與未來展望 70 參考文獻 71

    1. Basel Committee on Banking Supervision, (2000). Credit Ratings and
    Complementary Sources of Credit Quality Information. No 3, August.
    2. Crouhy, M., Galai, D., Mark, R., (2000). A Comparative Analysis of Current Credit
    Risk Models. Journal of Banking and Finance 24, 59-117.
    3. Gupton, G.M., Finger, C., Bhatia, M., (1997). Credit Metrics – Technical
    Document. Morgan Guaranty Trust Co., New York.
    4. Gordy, M.B., Heitfeld, N., 2000. Estimating Factor Loadings When Ratings
    Performance Data Are Scarce. Board of Governors of the Federal Reserve System,
    Division of Research and Statistics, Working Paper.
    5. Longerstaey, Jacques, and Peter Zangari. RiskMetrics™ – Technical Document.
    4th Edition. (New York: Morgan Guaranty Trust Co., 1996)
    6. Lucas, A., Klaassen, P., Spreij, P., Straetmans, S., 2000. An Analytic Approach to
    CreditRisk of Large Corporate Bond and Loan Portfolios. Working Paper.
    Forthcoming in: Journal of Banking and Finance.
    7. Standard & Poor’s (2001b) Ratings Performance 2000 – Default, Transition,
    Recovery, and Spreads. New York.

    QR CODE
    :::