跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡東潁
Dong-ying Tsai
論文名稱: 磁流體在部分填塞空間中雙重擴散對流之研究
指導教授: 曾重仁
Chung-jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 120
中文關鍵詞: 雙重擴散對流磁流體磁場多孔性介質熱傳質傳
外文關鍵詞: double diffusive, magnetic fluid, magnetic field, porous media, heat transfer, mass transfer
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用數值模擬研究部分多孔性介質之矩形封閉空間中,磁流體之擴散對流現象。在多孔材介質中使用Forchiemer-Brinkman-extended Darcy模式,考慮浮力效應、多孔性介質內部黏滯效應與慣性力,定義左右壁面為絕熱,上下壁面為固定溫度及濃度,並在橫向上施加一均勻磁場做用於流場中。改變不同參數浮力強度Ra、磁場強度Ha、路易士數Le、浮力比N、多孔材熱質S及多孔材達西數Da,最後比較改良濃度擴散率前後之差異,觀察紐塞爾數Nu、希吾爾數Sh、等溫度線圖、等濃度線圖及流線函數圖的變化。
    結果顯示當Ra、Da增加及N、Ha減少時會幫助熱傳及質傳。多孔材介質增加熱源S時會使熱傳量降低,但質傳量會變大。當Le逐漸增加時,熱傳量會有最大值的產生,而質傳量隨Le數增加而變大。濃度擴散率改良後會使質傳量變小,但熱傳量不一定變小。


    This thesis reports the effect of magnetic field on the double diffusive natural convection in an enclosure filled with partial porous layer by numercial method. The Forchiemer-Brinkman-extended Darcy model has been used to solve the governing equation in the saturated porous region. The right and left walls are adiabatic and the top and bottom walls are fixed temperature and concentration. In addition, a uniform magnetic field is applied perpendicular to the short sides. Variation of the enclosure Nusselt numbers (Nu), Sherwood numbers (Sh), isotherms, isoconcentration lines and Streamlines due to changes Rayleigh (Ra), Hartmann (Ha), Lewis (Le), Darcy numbers (Da), buoyancy ratio (N), the heat source of porous media (S) and modified mass diffusivity.
    The results shows that when Ra and Da increase and N and Ha decrease, Nu and Sh will increase. When increase S, Nu will decrease and Sh will increase. When increase Le, Nu has a maximum value but Sh will increase. After modifying mass diffusivity, Sh will decrease but Nu will increase or decrease.

    中文摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 符號說明 XI 一、緒論 1 1.1研究動機與背景 1 1.2磁流體力學理論 2 1.3文獻回顧 4 1.4研究目的 10 二、理論分析 11 2.1幾何模型 11 2.2統御方程式 12 2.3邊界條件及參數定義 16 三、數值方法 18 3.1有限體積法 18 3.1.1連續、動量、能量及濃度方程式 18 3.1.2壓力改良方程式 22 3.1.3 SIMPLE疊代程序 23 3.2程式驗證 24 四、結果與討論 27 4.1磁場與浮力強度之影響 27 4.2多孔材熱源與浮力強度之影響 35 4.3路易士數與多孔材熱源之影響 40 4.4浮力比與磁場之影響 45 4.5達西數與浮力強度之影響 48 4.6達西數與磁場之影響 52 4.7浮力比與路易士數之影響 54 4.8改良濃度擴散率 61 4.8.1 濃度項改良前後磁場與浮力強度之影響比較 62 4.8.2 濃度項改良前後多孔材熱源與浮力強度之影響比較 72 4.8.3 濃度項改良前後達西數與磁場之影響比較 77 4.8.4 濃度項改良前後路易士數與浮力比之影響比較 85 五、結論與建議 96 5.1結論 96 5.2未來研究方向與建議 98 六、參考文獻 99

    [1] M.A. Abd, El-Naby, and Elsayed M.E., "Finite difference solution of radiation effects on MHD unsteady free-convection flow over vertical porous plate," Applied Mathematics & Computation, Vol. 151, pp.327-346, 2004.
    [2] Goyeau, R., Songbe, J. -P. and Gobin, D., "Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation," Int. J. Heat Mass transfer, Vol.39, No.7, pp.1363-1378, 1996.
    [3] V A F Costa, "Double-diffusive natural convection in parallelogrammic enclosures filled with fluid saturated porous media," Int. J. Heat Mass transfer, Vol.47, pp.2699-2714, 2004.
    [4] Bourich, M., Hasnaoui, M. and Amahmid, A., "A scale analysis of thermosolutal convection in a saturated porous enclosure submitted to vertical temperature and horizontal concentration gradients," Energy Conversion and Management, Vol.45, pp.2765-2811, 2004.
    [5] Mohamad, A.A. and Bennacer, R., "Natural convection in a confined saturated porous medium with horizontal temperature and vertical solutal gradients," Int. J. Therm. Sci., Vol.40, pp.82-93, 2001.
    [6] Chamkha, A. and Al-Naser, H., "Double-diffusive convection in a inclined porous enclosure with opposing temperature and concentration gradients," Int. J. Therm. Sci., Vol.40, pp.227-244, 2001.

    [7] Mohamad, A.A. and Bennacer, R., "Double diffusion, natural convection in an enclosure filled with saturated porous medium subjected to cross gradients; stably stratified fluid," Int. J. Heat Mass Transfer, Vol.45, pp.3725-3740, 2002.
    [8] Zhao, F. Y., Liu, D. and Tang, G. F., "Free convection from one thermal and solute source in a confined porous medium," Transp. Porous Med., Vol.70, pp.407-425, 2007.
    [9] Malashetty, M. S., Swamy, M. and Heera, R., "Double diffusive convection in a porous layer using a thermal non-equilibrium model," Int. J. Therm. Sci., Vol.47, pp.1131-1147, 2008.
    [10] Masuda, Y., Yoneya M., Suzuki A., Kimura, S. and Alavyoon, F., "Numerical analysis of re-oscillation and non-centrosymmetric convection in a porous enclosure due to opposing heat and mass fluxes on the vertical walls," Int. Comm. Heat Mass Transfer, Vol.37, pp.250-255, 2010.
    [11] Tofaneli, L. A. and Lemos, M. J. S., "Double-diffusive turbulent natural convection in a porous square cavity with opposing temperature and concentration gradients," Int. Comm. Heat Mass Transfer, Vol.36, pp.991-996, 2009.
    [12] Khadiri, A., Amahmid, A., Hasnaoui, and Rtibi, A., "Soret effect on double-diffusive convection in a square porous cavity heated and salted from below," Numercal Heat Transfer, pp.848-868, 2010.
    [13] Al-Farhany, K. and Turan, A., "Non-Darcy effects on conjugate double-diffusive natural convection in a variable porous layer sandwiched by finite thickness walls," Int. J. Heat Mass transfer, Vol.54, pp.2868-2879, 2011.
    [14] Nishimura, T., Wakamatsu, M. and Morega, A.M., "Oscillatory double-diffusive convection in a rectangular enclosure with combined horizontal temperature and concentration gradients," Int. J. Heat Mass Transfer, Vol.41, No.11, pp.1601-1611, 1998.
    [15] Malashetty, M. S., Pal D. and Kollur, P., "Double-diffusive convection in a Darcy porous medium saturated with a couple-stress fluid," Fluid Dyn. Res., Vol.42, 035502, 2010.
    [16] Masuda, Y., Yoneya, M., Suzuki, A., Kimura, S. and Alavyoon, F., “Numerical analysis of re-oscillation and non-centrosymmetric convection in a porous enclosure due to opposing heat and mass fluxes on the vertical walls,” Int. Comm. Heat Mass Transfer, Vol.37, pp.250-255, 2010.
    [17] Kumar, A. and Bhadauria, B. S., "Double diffusive convection in a porous layer saturated with viscoelastic fluid using a thermal non-equilibrium model," Phys. Fluids, Vol.23, 054101, 2011.
    [18] Kim, S. J. and Choi, C.Y., "Convective heat transfer in porous and overlying fluid layers heated from below," Int. J. Heat Mass Transfer, Vol.39, No.2, pp.319-329, 1996.
    [19] Merrikh, A.A. and Mohamad, A.A., "Non-Darcy effect in buoyancy driven flows in an enclosure filled with vertically layered porous media," Int. J. Heat Mass Transfer, Vol.45, pp.4305-4313, 2002.
    [20] Bennacer, R., Beji, H. and Mohamad, A.A., "Double-diffusive convection in a vertical enclosure inserted with two saturated porous layers confining a fluid layer," Int. J. Therm. Sci., Vol.42, pp.141-151, 2003.

    [21] Mharzi, M., Daguenet, M. and Daoudi, S., "Thermosolutal natural convection in a vertically layered fluid-porous medium heated from the side," Energy Conversion and Management, Vol.41, pp.1065-1090, 2000.
    [22] Goyeau, B. and Gobin, D., "Heat transfer by thermosolutal natural convection in a vertical composite fluid-porous cavity," Int. Comm. Heat Mass Transfer, Vol.36, No.8, pp.1115-1126, 1999.
    [23] Chen, X. B., Yu, P., Sui, Y., Winoto, S.H. and Low, H. T., "Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source," Transp. Porous Media, Vol.78, pp.259-276, 2009.
    [24] Baytas, A. C., Baytas, A. F., Ingham, D. B. and Pop, I., "Double diffusive natural convection in an enclosure filled with a step type porous layer: Non-Darcy flow," Int. J. Therm. Sci., Vol.48, pp.665-673, 2009.
    [25] Sunil, Sharma A., Bharti, P. K. and Shandil, R. G., "Linear stability of double-diffusive convection in a micropolar ferromagnetic fluid saturating a porous medium," Int. J. Mech. Sci., Vol.49, pp.1047-1059, 2007.
    [26] Mohamed A. Teamah ,"Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source," Int. J. Therm. Sci., Vol.47, pp.237-248, 2008.
    [27] Bhadauria, B. S. and Sherani, A., "Onset of Darcy-Convection in a Magnetic-Fluid-Saturated Porous Medium Subject to Temperature Modulation of the Boundaries," Transp. Porous. Med., Vol.73, pp.349-368, 2008.

    [28] Venkatachalappa, M., Do, Y. and Sankar, M.,"Effect of magnetic field on the heat and mass transfer in a vertical annulus," Int. J. Engineering Sci., Vol.49, pp.262-278, 2011.
    [29] Kumar, P. and Mohan, H., "Double-Diffusive Magneto Convection in a Compressible Couple-Stress Fluid Through Porous Medium," Zeitschrift fur naturforschung section a-a journal of physical sciences, Vol.66, pp.304-310, 2011.
    [30] Mohamed, A.A. and Enass, Z. M., "Numerical simulation of double-diffusive natural convective flow in inclined rectangular enclosure in the presence of magnetic field and heat source," Int. J. Therm. Sci., Vol.52, pp.161-175, 2012.
    [31] C. Beckermann, S. Ramadhyani, R. Viskanta, “Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure,” Journal of Heat Transfer, vol. 109, pp. 363-364 ,1987.
    [32] Patankar, S., Numerical heat transfer and fluid flow, Hemisphere, New York, 1980.
    [33] Chung jen, Tseng, Hydrogen Energy and Fuel Cells : Introduction to Electrochemical Kinetics, 2013.

    QR CODE
    :::