| 研究生: |
徐鍇 Kai Hsu |
|---|---|
| 論文名稱: |
以桁架模式分析鋼筋混凝土抗彎構架行為之研究 Investigation on RC Moment-Resisting Frames by means of Truss Model Analysis |
| 指導教授: |
王勇智
Yung-Chih Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 桁架模式 、梁柱接頭 、抗彎構架 、分析 |
| 外文關鍵詞: | beam-column joint, truss model, Moment-resisting frame, analysis, 3D Lattice model |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究與日本東京工業大學Niwa教授及助手Miki博士進行國際研究合作,採用其開發之桁架模型分析程式3D Lattice model進行含梁柱抗彎構架之分析。
本文內容包含分析程式Lattice model之介紹,參數分析及實驗驗證。藉由參數分析,乃將原始分析程式修改,以適合預測RC抗彎構架行為。在參數分析部分,包含分析構架可選定多種材料性質、混凝土軟化係數選取、梁對接頭造成的圍束效果,以及對接頭勁度進行折減等探討。
文末利用四座含底層之梁柱抗彎實驗構架及一座兩層兩跨抗彎實驗構架,進行實驗與分析結果比較。從中,可以發現無論在整體抗彎構架行為與柱及接頭細部行為,利用本修正後之程式作分析,都有不錯的成果。
本研究亦發現後續研究問題,如分析之結構初始勁度高於實驗值、接頭勁度折減改良、拱桿件角度之限制等,亦有待未來作深入探討。
The research has been cooperated with Professor Niwa and Dr. Miki from Tokyo Institute of Technology in Japan since March 2006. The target of the research is to examine the analytical ability of the computed program, 3D Lattice model, developed by Niwa group, and to verify the prediction accuracy of moment-resisting frames by means of a series of experimental results. The main structure of 3D lattice model program was made in association with the calculation method of structural matrix analysis to calculate the framing forces and displacements subjected to both monotonic and cyclic loading.
Originally, the lattice model was used to predict the seismic behaviors of bridge piers. In order to predict the behavior of RC moment-resisting frames, the original program must be modified. Such as multi concrete models, concrete soften coefficient, stiffness degradation in simulating beam-column joint part, etc. were considered.
The modified analytical program was verified by using four tested frames with different failure modes and two story-two bay reinforced concrete moment-resisting frame. The predicted results using the modified program correlated overall framing response well. The results of the detail analysis on shear deformations of columns and beam-column joints also agreed with testing measurements well. It represents the refined analytical program simulates the behavior of RC moment-resisting frame in a feasible way.
However, the research still has some issues need to be discussed. Such as the predicted initial stiffness of the structures is higher than experimental result, the simulation of stiffness degradation in beam-column joints, and the angle limit of arch members, should be discussed in the future.
1. Collins, M. P., and Mitchell, D., Prestressed Concrete Structures, pp. 62(1991).
2. Thorenfeldt, E., Tomaszewicz, A., and Jensen, J. J., “Mechanical Properties of High-Strength Concrete and Application in Design,” Proceedings of the Symposium “Utilization of high strength Concrete.” Stavanger, Noway, Tapir, Trondheim, pp. 149-159(1987).
3. Pauw, A., “Static Modulus of Elasticity of Concrete as Affected by Density,” ACI Journal, Vol. 57, No. 6, pp 679-688(1960).
4. Carrasquillo, R. L., Nilson, A. H., and Slate, F. O., “Properties of High Strength Concrete Subject to Short-Term Loads,” ACI Journal, Vol 78, No. 3, pp. 171-178(1981).
5. Mander, J. B., Priestley, M. J. N., and Park, R., ASCE “Theoretical Stress-Strain Model for Confined Concrete” Journal of Structural Engineering, Vol. 114, No. 8, pp. 1804-1826(1988).
6. Priestley, M. J. N., Seible, F., and Calvi, G. M., Seismic Design and Retrofit of Bridges, pp. 270-271(1996).
7. Vecchio, F. J., and Collins, M. P., “The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Journal, Vol.83, No2, pp.219-231(1986).
8. Okamura, H. and Maekawa, K., Nonlinear Analysis and Constitutive Models of Reinforced Concrete, Gihodo Publication(1991).
9. Uchida, U., Rokugo, K., and Koyanagi, W., “Determination of Tension Softening Diagrams of Concrete by Means of Bending Tests, “Journal of Materials, Concrete Structures and Pavements, JSCE, No. 426/V-14, pp.203-212(1991).
10. Vecchio, F. J., and Collins, M. P., ”Response of Reinforced Concrete to In Plane Shear and Normal Stresses,” Report No. 82-03, University of Toronto, Canada(1982).
11. Belarbi, A., and Hsu, T. T. C., ”Constitutive Laws of Softened Concrete in Biaxial Tension-Compression,” ACI Structural Journal, Vol. 92, No. 5, September-October, pp.562-573 (1995).
12. Fukuura, N. and Maekwa, K., “Computational Model of reinforcing Bar under Reversed Cyclic Loading for RC Nonlinear Analysis,” Journal of Materials, Concrete Structures and Pavements, JSCE, No. 564/V-35, pp.291-295(1997).
13. Dhakal, R. P., Enhanced Fiber Model in Highly Inelastic Range and Seismic Performance Assessment of Reinforced Concrete, Doctoral thesis, The University of Tokyo(2000).
14. Shin, H., Maekawa, K., and Okamura, H., “Analytical Approach of RC Members Subjected to Reversed Cyclic In-plane Loadings, Proceeding of the JCI Colloquium on Ductility of Concrete Structures and its Evaluation, pp.(II-45)-(II-56)(1988).
15. 葉欲凡,「鋼筋混凝土梁柱接頭剪力衰減模式應用於構架層間剪力與變位之預測」,碩士論文,王勇智教授指導,國立中央大學土木工程研究所,桃園(2005)。
16. Miki, T., “Nonlinear Analysis of Reinforced Concrete Structures Subjected to Seismic Loads by Using Three-dimensional Lattice Model,” Supervised by Professor J. Niwa, PhD thesis , Department of Civil Engineering, Tokyo Institute of Technology, Japan, 210pp. (2004).
17. 何偉智,「鋼筋混凝土擴柱補強工法對非韌性梁柱接頭耐震能力提升之探討」,碩士論文,王勇智教授指導,國立中央大學土木工程學研究所,桃園(2003)。
18. 賴宗祺,「桁架軟化模式應用於無水平箍筋梁柱接頭剪力及變形曲線預測之研究」,碩士論文,王勇智教授指導,國立中央大學土木工程學研究所,桃園(2004)。
19. 林彥谷,「鋼筋混凝土擴柱補強後新舊混凝土滑移對結構物耐震性能影響之探討」,碩士論文,王勇智教授指導,國立中央大學土木工程學研究所,桃園(2005)。
20. 楊森盛,「含有不同破壞模式之鋼筋混凝土抗彎構架實驗」,碩士論文,王勇智教授指導,國立中央大學土木工程學研究所,桃園(2006)。
21. 黃金順,「雙層兩跨鋼筋混凝土抗彎構架耐震測試」,碩士論文,王勇智教授指導,國立中央大學土木工程學研究所,桃園(2003)。