| 研究生: |
周季賢 Chi-Hsien Chou |
|---|---|
| 論文名稱: | High-Harmonic Generation beyond the Traditional Phase-Matching Cutoff Energy |
| 指導教授: |
朱旭新
Hsu-hsin Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 187 |
| 中文關鍵詞: | 高階諧波產生 、極紫外光 、截止能量 、相位匹配 、內在偶極相位變化 |
| 外文關鍵詞: | High-Harmonic Generation, Extreme Ultraviolet, Cutoff Energy, Phase Matching, Intrinsic Dipole Phase Variation |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
要產生短波長的高相干性光源,由雷射和氣體作用產生的高階諧波是一種有效的方法。要提升高階諧波輸出階數,突破傳統相位匹配截止能量,使用離子作為交互作用介質是一種可行的方式。在這份論文中,我們成功達成這個目標,使用氬氣離子將輸出波長推進至 17 nm,超過傳統相位匹配截止能量所對應的 27.6 nm。我們也對此高階諧波產生過程中的相位匹配條件進行了完整的測量,其結果能輔助未來達成高效率之相位匹配高階諧波產生。
To construct a short-wavelength coherent light source, high-harmonic generation from the interaction of lasers and gases is an effective method. To increase the output photon energy beyond the traditional phase-matching cutoff energy, using ions as the interaction medium is a promising way. In this thesis, we succeeded in achieving this goal by using argon ions as the interacting medium to push the output wavelength to 17 nm, beyond 27.6 nm, corresponding to its conventional phase-matching cutoff energy. We have also measured the complete phase-matching conditions of the generation process. The results can assist in achieving effcient phase-matched high-harmonic generation in the future.
[1] P. B. Corkum”, “Plasma Perspective on Strong-Field Multiphoton Ionization,” Phys.
Rev. Lett. 71 (1993).
[2] C. Winterfeldt, C. Spielmann, and G. Gerber”, “Colloquium: Optimal control of
high-harmonic generation,” Rev. Mod. Phys. 80 (2008).
[3] ”Hsu-hsin Chu”, “Phase matching of high-harmonic generation,” Memorandum
(2021).
[4] P. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein”, “Generalized phasematching conditions for high harmonics: The role of field-gradient forces,” Phys.
Rev. A 55, 3204–3210 (1997).
[5] T. Popmintchev, Ming-Chang Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M. M.
Murnane, and H. C. Kapteyn”, “Extended phase matching of high harmonics driven
by mid-infrared light,” Optics Letters 33 (2008).
[6] T. Popmintchev, Ming-Chang Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I. P. Christov, M. M. Murnane, and H. C. Kapteyn”, “Phase matching of high
harmonic generation in the soft and hard X-ray regions of the spectrum,” PNAS 106
(2009).
[7] E. A. Gibson, Quasi-Phase Matching of Soft X-ray Light from High-Order Harmonic Generation using Waveguide Structures, Ph.D. thesis, Colorado School of
Mines (2004).
[8] E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. L. Blanc, F. Salin, and
P. Agostini”, “Optimizing High Harmonic Generation in Absorbing Gases: Model
and Experiment,” Phys. Rev. Lett. 82 (1999).
[9] C. Chantler, K. Olsen, R. Dragoset, A. Kishore, S. Kotochigova, and D. Zucker,
“X-Ray Form Factor, Attenuation and Scattering Tables (version 2.0),” (2003).
[10] D. A. Verner, G. J. Ferland, K. T. Korista, and D. G. Yakovlev”, “Atomic Data for
Astrophysics. II. New Analytic Fits for Photoionization Cross Sections of Atoms and
Ions,” Astrophysical Journal 465 (1996).
[11] Te-Sheng Hung, Chi-Hsiang Yang, Jyhpyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin,
and Hsu-hsin Chu, “A 110-TW multiple-beam laser system with a 5-TW wavelengthtunable auxiliary beam for versatile control of laser-plasma interaction,” Applied
Physics B 117 (2014).
[12] ”DonnaStrickland and G. Mourou”, “Compression of amplified chirped optical
pulses,” Optics Communications 55 (1985).
[13] ”Hsu-hsin Chu”, Construction of a 10-TW Laser of High Coherence and Stability
and Its Application in Laser-Cluster Interaction and X-Ray Lasers, Ph.D. thesis,
National Taiwan University (2005).
[14] Yao-Li Liu, Shih-Chi Kao, Yi-Yong Ou Yang, Zhong-Ming Zhang, Jyhpyng Wang,
and Hsu-hsin Chu, “Tomographic analysis of high-order harmonic generation by integrating a phase-matching profile measurement with disruptive interaction-length
control,” Phys. Rev. A 104 (2021).
[15] Lebow Co., “Filter Transmission,” .
[16] J. Primo”, “Three-wave lateral shearing interferometer,” Applied optics 32 (1993).
[17] J. Primot and L. Sogno”, “Achromatic three-wave (or more) lateral shearing interferometer,” J. Opt. Soc. Am. A 12 (1995).
[18] J.-C. Chanteloup”, “Multiple-wave lateral shearing interferometry for wave-front
sensing,” APPLIED OPTICS 44 (2005).
[19] A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion
measurement of inert gases and gas mixtures at 800 nm,” APPLIED OPTICS 47
(2008)
[20] T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog,
O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Applied Physics
B 99 (2010).
[21] T. Kita, T. Harada, N. Nakano, and H. Kuroda”, “Mechanically ruled aberrationcorrected concave gratings for a flat-field grazing-incidence spectrograph,” Appl. Opt.
22, 512–513 (1983).
[22] D.Neely, D.Chambers, F.Quinn, and M.Roper, “Soft X-ray grating calibration,”
Tech. rep., Rutherford Appleton Laboratory, Chilton, UK (1997).
[23] T. Harada, K. Takahashi, H. Sakuma, and A. Osyczka”, “Optimum design of a
grazing-incidence flat-field spectrograph with a spherical varied-line-space grating,”
Appl. Opt. 38, 2743–2748 (1999).
[24] Edmund Optics, “Understanding Microscopes and Objectives,” .
[25] Thorlabs, Inc., “Microscope Objective, Tube, and Scan Lens Tutorials,” .
[26] Evident (Olympus), “Microscope Objectives Introduction,” .
[27] Evident (Olympus), “Objective Lens,” .
[28] Evident (Olympus), “Specifications and Identification,” .
[29] Thorlabs, Inc., “Microscope Objectives, Water Dipping or Immersion,” .