跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周季賢
Chi-Hsien Chou
論文名稱: High-Harmonic Generation beyond the Traditional Phase-Matching Cutoff Energy
指導教授: 朱旭新
Hsu-hsin Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 187
中文關鍵詞: 高階諧波產生極紫外光截止能量相位匹配內在偶極相位變化
外文關鍵詞: High-Harmonic Generation, Extreme Ultraviolet, Cutoff Energy, Phase Matching, Intrinsic Dipole Phase Variation
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 要產生短波長的高相干性光源,由雷射和氣體作用產生的高階諧波是一種有效的方法。要提升高階諧波輸出階數,突破傳統相位匹配截止能量,使用離子作為交互作用介質是一種可行的方式。在這份論文中,我們成功達成這個目標,使用氬氣離子將輸出波長推進至 17 nm,超過傳統相位匹配截止能量所對應的 27.6 nm。我們也對此高階諧波產生過程中的相位匹配條件進行了完整的測量,其結果能輔助未來達成高效率之相位匹配高階諧波產生。


    To construct a short-wavelength coherent light source, high-harmonic generation from the interaction of lasers and gases is an effective method. To increase the output photon energy beyond the traditional phase-matching cutoff energy, using ions as the interaction medium is a promising way. In this thesis, we succeeded in achieving this goal by using argon ions as the interacting medium to push the output wavelength to 17 nm, beyond 27.6 nm, corresponding to its conventional phase-matching cutoff energy. We have also measured the complete phase-matching conditions of the generation process. The results can assist in achieving effcient phase-matched high-harmonic generation in the future.

    摘要ix Abstract xi Dedication xiii Contents xviii List of Figures xix List of Figures xxviii List of Tables xxix List of Tables xxx Explanation of Symbols xxxi 1 Introduction 1 1.1 High-Harmonic Generation (HHG) . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Three-Step Model of HHG . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Phase Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Experimental Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Theoretical Calculation 11 2.1 Dipole Phase Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Absorption of Harmonics in the Medium . . . . . . . . . . . . . . . . . . . 14 Contents 3 Experimental Setup 19 3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Main Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 Probe Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.3 Gas Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.4 2D EUV Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Direct Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 Main Beam Relay Imaging System . . . . . . . . . . . . . . . . . . 24 3.2.3 Transverse Wavefront Sensor and Probe Beam Relay Imaging System 26 3.2.3.1 Analysis of Gas and Plasma Density . . . . . . . . . . . . 29 3.2.4 2D EUV Spectrometer (FFS) . . . . . . . . . . . . . . . . . . . . . 30 3.3 Experimental Parameters Control . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Laser Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 Focal Spot Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.3 Gas Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.4 Image Plane of Main Beam Relay Imaging System . . . . . . . . . 32 4 Experimental Results 35 4.1 Experiment Using Ar Gas Jet . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1.1 Driving Beam Characteristics . . . . . . . . . . . . . . . . . . . . . 35 4.1.2 Probe Beam Relay Imaging System . . . . . . . . . . . . . . . . . . 39 4.1.3 HHG from Atoms and Ions . . . . . . . . . . . . . . . . . . . . . . 40 4.1.3.1 HHG from Atoms . . . . . . . . . . . . . . . . . . . . . . 40 4.1.3.2 HHG from Ions . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.4 Phase-Matching Condition Analysis . . . . . . . . . . . . . . . . . . 48 4.1.4.1 Phase Mismatch Caused by Neutral Gas Dispersion Δϕgas and Plasma Dispersion Δϕplasma . . . . . . . . . . . . . . 48 4.1.4.2 Phase Mismatch Caused by Gouy Phase ΔϕGouy . . . . . 48 4.1.4.3 Phase Mismatch Caused by Dipole Phase Δϕdipole . . . . 49 4.1.4.4 Total Phase Mismatch Δϕtotal . . . . . . . . . . . . . . . 51 4.1.5 Modulation of Δϕdipole to HHG from Atoms . . . . . . . . . . . . . 53 4.1.5.1 Change of Focal Spot Size and Parameter Control . . . . 53 Contents 4.1.5.2 Harmonics Yield Analysis . . . . . . . . . . . . . . . . . . 58 4.1.5.3 Phase Mismatch Analysis . . . . . . . . . . . . . . . . . . 64 4.1.6 Modulation of Δϕdipole to HHG from Ions . . . . . . . . . . . . . . 67 4.1.6.1 Change of Focal Spot Size and Parameter Control . . . . 67 4.1.6.2 Harmonics Yield Analysis . . . . . . . . . . . . . . . . . . 72 4.1.6.3 Phase Mismatch Analysis . . . . . . . . . . . . . . . . . . 75 4.1.7 Estimation of Absorption of Harmonics in the Medium . . . . . . . 77 4.2 Experiment Using Ne Gas Jet . . . . . . . . . . . . . . . . . . . . . . . . . 79 5 Discussion, Conclusion, and Perspective 81 5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.1.1 Alignment of the Nozzle in x-Direction . . . . . . . . . . . . . . . . 81 5.1.2 A More Rigorous Model for the Intensity Interpolation . . . . . . . 82 5.1.3 The Next Step to Achieve Phase Matching . . . . . . . . . . . . . . 82 5.1.4 The Exact Time when the Generation of Harmonics Occurs . . . . 83 5.1.5 The Use of Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A Gratings for the EUV Spectrometer 85 A.1 Mechanically Ruled Aberration-Corrected Concave Grating . . . . . . . . . 85 A.2 Hitachi’s 001-0450 Grating Ruling Parameters Deduction . . . . . . . . . . 87 B Gate Valve for the Foil Filter 91 B.1 Design of Adapters of the Foil Filter . . . . . . . . . . . . . . . . . . . . . 91 B.2 Design of the Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 B.3 Design of the Rectangular Flange . . . . . . . . . . . . . . . . . . . . . . . 96 C Objective Selection Guide 99 C.1 Main Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 C.1.1 Classification According to Medium . . . . . . . . . . . . . . . . . . 99 C.1.2 Classification According to Propagation of Light Inside of Objective 100 C.1.3 Classification According to Existence of Focus . . . . . . . . . . . . 100 C.1.4 Classification According to Aberration Correction . . . . . . . . . . 100 Contents C.2 Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 C.3 Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 D Abel Inversion 105 D.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 D.2 Experiment and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 E Experimental Parameters Control 107 E.1 Energy Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 E.2 Tunable Aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 F Energy and Conversion Efficiency of Harmonics 113 G Experiment Using Ne Gas Jet 115 G.1 Driving Beam Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 115 G.2 Probe Beam Relay Imaging System . . . . . . . . . . . . . . . . . . . . . . 119 G.3 Ne-Based HHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 G.4 Modulation of Focal Spot Size . . . . . . . . . . . . . . . . . . . . . . . . . 123 G.4.1 Experimental Parameters . . . . . . . . . . . . . . . . . . . . . . . 123 G.4.2 Harmonics Yield Analysis . . . . . . . . . . . . . . . . . . . . . . . 128 G.4.3 Phase Mismatch Analysis . . . . . . . . . . . . . . . . . . . . . . . 131 G.5 Modulation of Backing Pressure . . . . . . . . . . . . . . . . . . . . . . . . 134 G.5.1 Experimental Parameters . . . . . . . . . . . . . . . . . . . . . . . 134 G.5.2 Harmonics Yield Analysis . . . . . . . . . . . . . . . . . . . . . . . 139 G.5.3 Phase Mismatch Analysis . . . . . . . . . . . . . . . . . . . . . . . 141 G.6 Theoretical Harmonics Yield and Modification of Intensity Evolution . . . 144 G.7 Estimation of Absorption of Harmonics in the Medium . . . . . . . . . . . 150 References 153

    [1] P. B. Corkum”, “Plasma Perspective on Strong-Field Multiphoton Ionization,” Phys.
    Rev. Lett. 71 (1993).
    [2] C. Winterfeldt, C. Spielmann, and G. Gerber”, “Colloquium: Optimal control of
    high-harmonic generation,” Rev. Mod. Phys. 80 (2008).
    [3] ”Hsu-hsin Chu”, “Phase matching of high-harmonic generation,” Memorandum
    (2021).
    [4] P. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein”, “Generalized phasematching conditions for high harmonics: The role of field-gradient forces,” Phys.
    Rev. A 55, 3204–3210 (1997).
    [5] T. Popmintchev, Ming-Chang Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M. M.
    Murnane, and H. C. Kapteyn”, “Extended phase matching of high harmonics driven
    by mid-infrared light,” Optics Letters 33 (2008).
    [6] T. Popmintchev, Ming-Chang Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I. P. Christov, M. M. Murnane, and H. C. Kapteyn”, “Phase matching of high
    harmonic generation in the soft and hard X-ray regions of the spectrum,” PNAS 106
    (2009).
    [7] E. A. Gibson, Quasi-Phase Matching of Soft X-ray Light from High-Order Harmonic Generation using Waveguide Structures, Ph.D. thesis, Colorado School of
    Mines (2004).
    [8] E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. L. Blanc, F. Salin, and
    P. Agostini”, “Optimizing High Harmonic Generation in Absorbing Gases: Model
    and Experiment,” Phys. Rev. Lett. 82 (1999).
    [9] C. Chantler, K. Olsen, R. Dragoset, A. Kishore, S. Kotochigova, and D. Zucker,
    “X-Ray Form Factor, Attenuation and Scattering Tables (version 2.0),” (2003).
    [10] D. A. Verner, G. J. Ferland, K. T. Korista, and D. G. Yakovlev”, “Atomic Data for
    Astrophysics. II. New Analytic Fits for Photoionization Cross Sections of Atoms and
    Ions,” Astrophysical Journal 465 (1996).
    [11] Te-Sheng Hung, Chi-Hsiang Yang, Jyhpyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin,
    and Hsu-hsin Chu, “A 110-TW multiple-beam laser system with a 5-TW wavelengthtunable auxiliary beam for versatile control of laser-plasma interaction,” Applied
    Physics B 117 (2014).
    [12] ”DonnaStrickland and G. Mourou”, “Compression of amplified chirped optical
    pulses,” Optics Communications 55 (1985).
    [13] ”Hsu-hsin Chu”, Construction of a 10-TW Laser of High Coherence and Stability
    and Its Application in Laser-Cluster Interaction and X-Ray Lasers, Ph.D. thesis,
    National Taiwan University (2005).
    [14] Yao-Li Liu, Shih-Chi Kao, Yi-Yong Ou Yang, Zhong-Ming Zhang, Jyhpyng Wang,
    and Hsu-hsin Chu, “Tomographic analysis of high-order harmonic generation by integrating a phase-matching profile measurement with disruptive interaction-length
    control,” Phys. Rev. A 104 (2021).
    [15] Lebow Co., “Filter Transmission,” .
    [16] J. Primo”, “Three-wave lateral shearing interferometer,” Applied optics 32 (1993).
    [17] J. Primot and L. Sogno”, “Achromatic three-wave (or more) lateral shearing interferometer,” J. Opt. Soc. Am. A 12 (1995).
    [18] J.-C. Chanteloup”, “Multiple-wave lateral shearing interferometry for wave-front
    sensing,” APPLIED OPTICS 44 (2005).
    [19] A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion
    measurement of inert gases and gas mixtures at 800 nm,” APPLIED OPTICS 47
    (2008)
    [20] T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog,
    O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Applied Physics
    B 99 (2010).
    [21] T. Kita, T. Harada, N. Nakano, and H. Kuroda”, “Mechanically ruled aberrationcorrected concave gratings for a flat-field grazing-incidence spectrograph,” Appl. Opt.
    22, 512–513 (1983).
    [22] D.Neely, D.Chambers, F.Quinn, and M.Roper, “Soft X-ray grating calibration,”
    Tech. rep., Rutherford Appleton Laboratory, Chilton, UK (1997).
    [23] T. Harada, K. Takahashi, H. Sakuma, and A. Osyczka”, “Optimum design of a
    grazing-incidence flat-field spectrograph with a spherical varied-line-space grating,”
    Appl. Opt. 38, 2743–2748 (1999).
    [24] Edmund Optics, “Understanding Microscopes and Objectives,” .
    [25] Thorlabs, Inc., “Microscope Objective, Tube, and Scan Lens Tutorials,” .
    [26] Evident (Olympus), “Microscope Objectives Introduction,” .
    [27] Evident (Olympus), “Objective Lens,” .
    [28] Evident (Olympus), “Specifications and Identification,” .
    [29] Thorlabs, Inc., “Microscope Objectives, Water Dipping or Immersion,” .

    QR CODE
    :::