跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳海茵
Hai-Yin Chen
論文名稱: 一氧化碳與二氧化碳分析系統的建立與驗證
Construction and Validation of CO and CO2 Gas Chromatographic System
指導教授: 王家麟
Jia-Lin Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 94
語文別: 中文
論文頁數: 124
中文關鍵詞: 二氧化碳一氧化碳
外文關鍵詞: carbon monoxide, carbon dioxide
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    一氧化碳是燃燒以及大氣光化之產物,可借其背景濃度變化反推大氣氧化的能力,同時它也是高毒性的污染氣體。本研究利用小孔徑分子篩當作填充靜相做為一氧化碳分子的層析管柱,並由鎳觸媒管將一氧化碳還原成甲烷,再搭配感度、線性皆相當良好的火焰離子偵檢器(FID:flame ionization detector)做偵測,開發低成本的自製分析系統。方法驗証上分別與現行環保單位廣泛應用的非分散式紅外線光譜儀(non-dispersive IR)以及美國背景測站所使用的汞還原分析儀做一連續性的平行比對,以達到充份驗證的目的。
    而後針對上述系統的缺點做進一步的改良,利用雙管柱逆吹的層析方法以恆溫方式分析,縮短分析時間增加並時間解析上的能力,藉此更精確的描繪一氧化碳的濃度變化,並改善長期觀測上因管柱調理所可能產生的不穩定因素。
    再者,希望開發中孔徑的矽分子篩材料在層析技術上的應用。利用具有較大孔徑的持性,預期能夠作為快速分離大氣中的二氧化碳的填充靜相,並且搭配已經建構完成的自動進樣系統以及熱導偵檢器(thermal conductivity detector),探討新材料在應用上的可能性,最後並設計簡單的動態稀釋裝置,用以產生不同濃度之CO2氣體當作初步的定性依據;並根據不同的稀釋比例,驗証分析效果的線性以及再現性。


    Abstract
    Carbon monoxide is a by-product of biomass burning and photochemistry in the atmosphere. Monitoring background CO is a means to indirectly diagnose atmospheric oxidation capacity. The first part of this study involves the development of an automated gas chromatographic system for CO analysis. Using a molecular sieve 5Å column and a flame ionization detector (FID) with a Ni catalyst, CO can be reduced to CH4 by feeding H2 and detected by FID. The completed system was validated by a NDIR CO analyzer and a Reduced Gas Analyzer (RGA) by synchronously monitoring the CO variation in ambient air.
    The GC/FID/methanizer system was further modified into a back-flash model, which was able to perform CO monitoring with improved precision and better consistency with NDIR and RGA, because the separation can then be run at isothermal condition resulting in better analytical stability.
    Furthermore, this research also assessed the feasibility of employing mesoporous silica, i.e., MCM-41, MCM-48, and SBA-15, as the potential stationary phases aiming at separating CO2 in the atmosphere. By devising a similar system to that for CO with a thermal conductivity detector (TCD), it was found that MCM-41 with pore size of 46.6Å allowed the best CO2 separation. CO2 can be eluted from the MCM-41 packed column with a symmetric peak shape and within a reasonable time spent of 8 minutes . Due to the poor sensitivity of the TCD, a simple dynamic dilution device was built to easily make CO standards of any desired concentrations for testing the separation effectiveness and quality control aspects such as precision and linearity.

    目 錄 中文摘要 I 英文摘要 II 謝誌 IV 目錄 V 表目錄 VI 圖目錄 VII 第一章 前言 1 1-1 緣起 1 1-2 一氧化碳的介紹 2 1-3 二氧化碳的介紹 14 1-4 分析方法回顧 22 1-4-1 光學量測方法的介紹 22 1-4-2 層析方法的介紹 24 1-5 研究動機 27 第二章 一氧化碳系統的開發改良與驗證 28 2-1 三種一氧化碳分析儀器間的平行比對 28 2-1-1 自行建構GC/FID搭配Ni-Catalyst量測儀 (GC/FID/methanizer) 30 2-1-1a 閥門及進樣系統設計 30 2-1-1b 進樣壓力控制 33 2-1-1c 層析管柱材料的選擇 34 2-1-1d 鎳觸媒管的使用原理 34 2-1-1e 火焰離子偵檢器的使用原理 36 2-1-1f 時序控制軟體 37 2-1-1g 圖譜剪裁裝置 38 2-1-1h 分析條件的設定 39 2-1-1i GC/FID/methanizer的檢量線製作 40 2-1-2 氧化汞還原氣體分析模組 (RGD) 45 2-1-2a 汞還原偵測儀的原理 45 2-1-2b RGD訊號擷取及數據處理 48 2-1-2c RGD系統檢量線的製作 53 2-1-3非分散式紅外線光譜儀 (NDIR) 55 2-1-3a NDIR偵測原理 55 2-1-3b NDIR數據擷取以及訊號處理 57 2-1-4三儀器間平行比對的結果與討 60 2-2 逆吹式GC/FID/methanizer系統設計 65 2-2-1 逆吹式GC/FID/methanizer系統設計 66 2-2-2 層析管柱材料的選擇 68 2-2-3逆吹式GC/FID/methanizer系統的分析條件設定 70 2-2-4逆吹式GC/FID/methanizer系統與NDIR的平行比對 71 2-3 一氧化碳分析系統的結果與討論 74 第三章 新材料在二氧化碳分析技術上的應用 75 3-1 層析管柱材料的選擇 77 3-1-1中孔徑分子篩材料的介紹 77 3-1-2中孔徑分子篩材料的合成 78 3-2 閥門及進樣系統設計 83 3-3 進樣體積的控制 85 3-4 熱導偵檢器的使用原理 85 3-5 最佳化層析條件 86 3-6 檢量線製作 94 3-6-1 高濃度樣品的線上稀釋方法 95 3-6-2 升溫模式下所繪製的檢量線 98 3-6-3 恆溫模式下所繪製的檢量 100 3-7 二氧化碳分析系統的結果與討論 102 第四章 結論以及未來展望 103 參考文獻 106

    參考文獻
    [1] Smith, K. R. 1987. Biofuels, air pollution, and health: a global
    review. Kluwer Academic Pub,.
    [2] http://www.epa.gov.tw/F/evolve/AIR_ASSAY/INDEX_INDEX.HTM
    [3] http://www.epa.gov/air/urbanair/6poll.html
    [4] Levy, H. 1971. Normal atmosphere: Large radical and formaldehyde predicted. Science 173, 141-143.
    [5] Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B. 1981. Tropospheric chemistry: A global perspective. J. Geophys. Res. 86, 7210-7254.
    [6] http://taqm.epa.gov.tw/emc/html/b0705.htm
    [7] Finlayson-Pitts, B. J. and J. N. Pitts, Jr., 2000. Chemistry of the upper and lower atmosphere. Academic Press.
    [8] Thompson, A. M. 1992. The oxidizing capacity of the earth’s atmosphere: Probable past and future changes. Science 256, 1157-1165.
    [9] Singh, H. B. 1977. Atmospheric halocarbons: evidence in factor of reduced average hydroxyl radical concentration in the troposphere. Geophys. Res. Lett. 4, 101-104.
    [10] Lovelock, J. E. 1977. Methyl chloroform in the troposphere as an indicator of OH radical abundance. Nature 267, 32.
    [11] 鄒慶源 1997. 以四氯乙烯及甲基氯仿觀測資料推估背景大氣中氫氧基濃度及其季節性變化, 碩士論文, 國立中央大學化學所.
    [12] Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P. G., Cunnold, D. M., Alyea, F. N., O’Doherty, S., Salameh, P., Miller, B. R., Huang, J., Sturrock, G., Midgley, P. M. and McCulloch, A. 2000. A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J. Geophys. Res. 105, 17751-17792.
    [13] Lawrence, M. G., Jockel, P. and Kuhlmann, R. Von. 2001. What does the global mean OH concentration tell us? Atmos. Chem. Phys. 1, 37-49.
    [14] Wuebbles, D. J. and Hayhoe, K. 2002. Atmospheric methane and global change. Ear. Sci. Rev. 57, 177-210.
    [15] http://www.cmdl.noaa.gov/gallery/cmdl_overview
    [16] Madronich, S. and Granier, C. 1992. Impact of recent total ozone changes on tropospheric ozone photodissociation, hydroxyl radicals, and methane trends. Geophys. Res. Lett. 19, 465-467.
    [17] Hann, D., Martinerie, P., and Raynaud, D. 1996. Ice core data of atmospheric carbon monoxide over Antarctica and Greenland during the last 200 years. Geophys. Res. Lett. 23, 2235-2238.
    [18] http://svs.gsfc.nasa.gov/vis/a000000/a002100/a002150/index.
    html
    [19] Wang, J.L., Kuo, S. R., Ma, S. S., Chen, T. Y. 2001. Construction of a low-cost automated chromatographic system for the measurement of ambient methane. Analytica Chimica Acta 448, 187-193.
    [20] Hofmann, D. J., Butler, J. H., Dlugokencky, E. J., Elkins, J. W., Masarie, K., Montzka, S. A., and Tans, P. 2006. The role of carbon dioxide in climate forcing from 1979 – 2004: Introduction of the Annual Greenhouse Gas Index. Tellus B, in press.
    [21] http://en.wikipedia.org/wiki/Global_warming
    [22] http://unfccc.int/resource/docs/convkp/kpeng.html
    [23] http://tve.npust.edu.tw/NPUST/Popued/%BEi%B4%DE%A5%
    CE%A4%F4/%A5%CD%AA%AB%B3B%B2z%AAk.html
    [24] http://www.tier.org.tw/energymonthly/recent2/5.pdf
    [25] NIEA, 1992. 空氣中一氧化碳自動檢驗方法, 環署檢字第43007 號公告.
    [26] Porter, K. and Volman, D. H. 1962. Flame ionization detection of carbon monoxide for gas chromatographic analysis, Anal. Chem. 34, 748-749.
    [27] Lopez, J. d. P. 2002. Seasonality and global growth trends of carbon monoxide during 1995-2001. Univ. of Calif., Irvine.
    [28] McCullough, J. D., Crane, R. A., and Beckman, A. O. 1947. Detection of carbon monoxide in air by use of red mercuric oxide. Anal. Chem. 19, 999-1002.
    [29] Novelli, P. C., Connors, V. S., Reichle, H. G., Jr., Anderson, B. E., Bernninkmeijer, C. A. M., Brunke, E. G., Doddridge, B. G., Kirchhoff, V. W. J. H., Lam, K. S., Masarie, K. A., Matsuo, T., Parrish, D. D., Scheel, H. E., and Steele, L. P. 1998. An internally consistent set of globally distributed atmospheric carbon monoxide mixing ratios developed using results from an intercomparison of measurements. J. Geophys. Res. 103, 19285-19293.
    [30] http://cgsweb.moeacgs.gov.tw/CGSWeb/Result/Fault/web/
    english/chinese/page/91-B-2-6-1.htm
    [31] http://www.vici.com/hayesep/hsd_c7.php
    [32] Wang, J. L., Kuo, S. R., Ma, S. S., Chen, T. T. 2001. Construction of a low-cost automated chromatographic system for measurement of ambient methane. Anal. Chim. Acta. 448, 187-193.
    [33] Skoog, D. A., Holler, F. J., Nieman, T. A. 1998. Principles of instrumental analysis. 5th Ed.
    [34] Scanlon, J. T. and Willis, D. E. 1985. Calculation of flame ionization detector relative response factors using the effective carbon number concept. J. Chromatogr. Sci. 23, 333-340.
    [35] 蕭麗君 2005. 新吸附材料用於空氣中揮發性物質的萃取方法開發. 碩士論文, 國立中央大學化學所.
    [36] Beck, J. S. 1991. Method for synthesizing mesoporous crystalline
    material. U.S. Patent. No.5057296.
    [37] Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. 1992. Synthetic mesoporous crystaline material. U.S. Patent., No.5098684.
    [38] Beck, J. S., Kresge, C. T., McCullen, S. B., Roth, W. J., Vartuli, J. C. 1994. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. U.S. Patent. 363, 5304.
    [39] Ryoo, R., Kim, J. M., Ko, C. H., Shin, D. H. 1996. Disordered Molecular Sieve with Branched Mesoporous Channel Network. J. Phys. Chem. 100, 17718.
    [40] Chen, L. Y., Jaenikle, S., Chuah, G. K. 1997. Thermal and hydrothermal stability of framework-substituted MCM-41 mesoporous materials. Microporous Mater. 12, 323.
    [41] Mokaya, R. 2000. Al Content Dependent Hydrothermal Stability
    of Directly Synthesized Aluminosilicate MCM-41. J. Phys. Chem. 104, 8279-8286.
    [42] Zhao, Dongyuan., Sun, Jinyu., Li, Quanzhi., Stucky, Galen. D. 2000. Morphological control of highly ordered large pore mesoporous silica SBA -15. Chem. Mater. 12, 275- 279.
    [43] Glen, E. Fryxell., Jun, Liu., Teresa, A. Hauser., Zimin, Nie., Kim, F. Ferris., Shas, Mattigod., Meiling, Gong., Richard, T. Hallen. 1999. Design and Synthesis of Selective Mesoporous Anion Traps. Chemistry of Materials. 11 (8), 2148.
    [44] 吳東明 2005. 中孔徑矽分子篩與微孔徑碳分子篩使用於VOC 線上濃縮之吸附性比較,碩士論文.
    [45] Namieśnik, J. 1984. Generation of standard gaseous mixtures.
    J. Chromatogr. 300 ,79.
    [46] Konieczka, P., Świtaj-Zawadka, A., Namieśnik, J. 2004.
    Gaseous standard mixtures – the challenge of obtaining small amounts of measurands. Trends in Anal. Chem. 23, 450-458.

    QR CODE
    :::