跳到主要內容

簡易檢索 / 詳目顯示

研究生: 汪志偉
Chi-wei Wang
論文名稱: 利用剖風儀與二維雨滴譜儀對西南氣流實驗SoWMEX/TiMREX
Using the Wind Profiler and 2D-Video Disdrometer (2DVD) to Observed Different Precipitating System during the Southwest Monsoon Experiment (SoWMEX/TiMREX).
指導教授: 林沛練
Pay-Liam Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 97
語文別: 中文
論文頁數: 122
中文關鍵詞: 剖風儀
外文關鍵詞: wind profiler
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用剖風儀與二維雨滴譜儀針對2008年西南氣流觀測實驗(SoWMEX/ TiMREX)期間發生在台灣南部的降水系統進行觀測研究,首先使用三種不同降水分類方法進行比較,基本上皆可以獲得不同降水型態的特徵;使用地面雨滴譜儀進行降水分類,可以發現2008年6月在西南部的觀測,層狀降水所占的時間比率為九成,對流降水則占一成左右;而使用Williams et al. (1995)提出的方法,則可以將降水系統的型態分類得更為仔細,其中混合降水所占的時間比率最大,值得注意的是當我們把混合降水與層狀降水合在一起時,其所占的比率也約為九成,對流降水占一成,與地面雨滴譜儀分類有一致的情況。
    針對2008西南氣流實驗期間不同降水系統,去區分混合降水、層狀降水與對流降水,所做的垂直速度與回波統計分析,可以發現,層狀降水低層垂直落速,梅雨鋒系統略大於中尺度對流系統1m/s,而對流降水低層垂直落速則是中尺度對流系統略大1m/s;混合降水與層狀降水在高度4~5公里,垂直速度有明顯的速度梯度,回波有顯著躍升,此為融解層所造成的強回波;對流降水回波則隨高度的遞減而增加,並無亮帶的特徵出現。頻譜寬隨高度統計圖分析顯示,層狀降水在融解層上方的分布較為狹隘;混合降水則較為寬廣,顯示融解層上方可能有亂流的活動存在;對流降水的頻譜寬隨高度的曲線相較其他降水型態,則呈現底層窄而上層寬廣的形狀。
    同一時間二維雨滴譜儀觀測結果,在梅雨鋒以及中尺度對流系統,降雨率小於50mm/hr情況下,中值體積直徑 似乎隨著降雨率的增大而增大,但當降雨率持續變大時, 似乎維持在2.1值左右,顯現雨滴的增長似乎有一定的限制。而在log10( )與降雨率R的關係中,降雨率較小時,其log10( )分布較廣,隨降雨率增大,其值也會隨之緩慢變大,一致性佳。在μ、Λ與降雨率R的關係中,降雨率小於10mm/hr時,μ、Λ值分布相當廣,但隨降雨率增大,μ、Λ值皆有減小的趨勢。而從μ與Λ的散布圖中,可知μ與Λ似乎有一正相關的關係存在。在午後對流方面,由於資料比數較少,且雨滴譜儀所觀測到的降雨率不大,所以各gamma參數與降雨率的關係不甚明顯,在降雨率小於10mm/hr時,μ、Λ值 分布相當廣,不過依然可看到μ與Λ似乎有一正相關的關係存在。
    在混合及對流降水型態下,中尺度對流系統個案的平均雨滴粒徑分布比梅雨鋒個案大且多,而在層狀降水型態下,兩者則無太大差異,僅在大雨滴部分,梅雨鋒個案較多些。午後對流個案的平均雨滴粒徑分布最窄且雨滴濃度小,可能午後對流系統到達剖風儀與二維雨滴譜儀上空時,系統皆已開始消散,因此雨滴無法發展太大。


    In this study, we used the wind profiler and 2D-Video disdrometer (2DVD) to observed different precipitating system during the Southwest Monsoon Experiment (SoWMEX/TiMREX). At first, we use three classification methods to classify precipitation type and basically we can get the same characteristics of different type of precipitation, no matter what method is used. When we used the classification algorithms from 2DVD, we could find that, the ratio of straitiform precipitation time is about 90%. However, the ratio of convective precipitation time is about 10%. And then we used the wind profiler to classify precipitating clouds into either stratiform, mixed stratiform/convective, deep convective, or shallow convective clouds by analyzing the vertical structure of Doppler vertical velocity and spectral width. If the mixed stratiform/convective classification and the convective classification are combined into one type, then we can also get similar result, the ratio of precipitation time is about 90%, and the convective precipitation time is about 90%.
    Using wind profiler to classify different precipitating system into either strati- form, mixed stratiform/convective, deep convective, or shallow convective clouds during the SoWMEX/TiMREX experiment, we can find that, the vertical velocity of stratiform precipitation of Mei-Yu front is greater than MCS about 1 m/s. But the vertical velocity of convective precipitation of Mei-Yu front is smaller than MCSs about 1 m/s. The CFADS (Contoured Frequency by Altitude Diagrams) of reflectivity and vertical velocity of mixed and stratiform types, it shows a distinct bright band and associated large vertical gradient in Doppler velocity at the altitude of 4~5 km. But for the convective rain, no bright band was found. The spectral width frequency distribution for the stratiform precipitating system shaws narrow distribution above melting layer. However, mixed type precipitating system had broad distribution of spectral widths above melting layer, this means turbulent motions are possibly occurring within the cloud. However the spectral width frequency distribution for the convective precipitating system, the shape is different from above. It appears narrow in the lower layer, but broad in the higher layer of atmosphere.
    At the same time, the observational results of 2DVD of Mei-Yu and MCS, when rainfall rate smaller than 50 mm/hr, will greater with rainfall rate. But when rainfall rate greater than 50 mm/hr, seems stop growing at the value 2.1, it shows drop size has some limitation. When rainfall rate is small, log10( ) is scattered. When rainfall rate greater, log10( ) will also larger. It seems the log10( ) and rainfall rate is much closed related in larger rainfall rate. The relationship between μ、Λ and rainfall rate, when rainfall rate smaller than 10 mm/hr, μ、Λ is scattered and broad. But when rainfall rate is greater, μ、Λ will also become smaller. From the μ、Λ scatter plot, we can see that μ、Λ has positive correlation. For the afternoon thundershowers, we also can see that when rainfall rate smaller than 10 mm/hr, μ、Λ are scattered and broad, and μ、Λ has positive correlation.
    For the rainfall of mixed and convective type, the average of drop size distribution of MCS is larger and greater than Mei-Yu front case. However there is no big DSD difference for stratiform type between Mei-Yu front and MCS, but Mei-yu front case has more big rain drop. For the afternoon thundershowers, the average of drop size distribution is the most narrow and N(D) is the smallest, the result may be due to the afternoon thundershowers systems already dissipated when they moved over the wind profiler and 2DVD site.

    摘要................................i Abstract..............................ii 致謝................................iv 目錄................................v 圖表說明..............................vii 第一章 前言...........................1 1.1 研究動機................... .....1 1.2 研究回顧................... .....1 1.3 西南氣流實驗簡介.....................6 第二章 剖風儀與二維雨滴譜儀之觀測原理和資料處理方法.......8 2.1 剖風儀(UHF雷達簡介) ...................8 2.2 剖風儀的觀測方式與回波機制................10 2.3 剖風儀資料處理......................14 2.4 二維雨滴譜儀簡介.....................16 2.5 二維雨滴譜儀資料處理...................17 2.6 Gamma 分布之計算................. ....18 2.7 Normalized Gamma Drop Size Distribution計算.......20 2.8 反演空中雨滴粒徑Gamma分布之μ、Λ之方法..... ...22 2.9 資料來源與個案選取.................. ..23 2.10 分類降水型態的方法....................23 第三章 西南氣流實驗期間地面站、探空觀測的時間序列..... ...25 3.1 西南氣流實驗期間天氣概述.............. ...25 3.2 地面站觀測時序分析.................. ..26 3.3 探空資料時序分析................... ..28 3.4 個案挑選....................... ..30 第四章 剖風儀與二維雨滴譜儀觀測分析.............. .31 4.1 不同降水分類方法比較................. ..31 4.2 2008年 6月1~4日 梅雨鋒面個案..............34 4.2.1 個案概述........................34 4.2.2 垂直結構與雨滴粒徑分佈分析...............34 4.3 2008年 6月14~16日 中尺度對流個案............36 4.3.1 個案概述........................36 4.3.2 垂直結構與雨滴粒徑分佈分析...............37 4.4 2008年 6月18日 午後對流個案.............. 39 4.4.1 個案概述........................39 4.4.2 垂直結構與雨滴粒徑分佈分析...............39 4.5 2008年 6月30日 午後對流個案.............. 40 4.5.1 個案概述........................40 4.5.2 垂直結構與雨滴粒徑分佈分析...............40 第五章 結論與未來展望.................. ....42 5.1 結論...........................42 5.2 未來展望.........................44 參考文獻..............................45 表.................................51 圖.................................54

    朱延祥,1998:MST雷達回波機制的研究,博士論文,國立中央大學。
    王作台、黃志銘、胡志文,1992: 乾濕梅雨季東亞環流特性之研究。大氣科學,
    20,267-294。
    林沛練、劉振榮、陳台琦,1994:台灣先進氣象觀測儀器與相關研究。大氣科
    學,22,479-522。
    夏天祐,1998: 整合探空系統在梅雨鋒面結構與降水特性之觀測研究。國立中央
    大學碩士論文,163 頁。
    陳泰然,1998: 台灣梅雨研究的回顧。科學發展月刊,16,239-265。
    任俊儒,1999: 利用整合探空系統對不同天氣型態降水之觀測研究。國立中央大
    學碩士論文,117 頁。
    林欣弘,2001:利用整合探空系統分析南海北部大氣邊界層特性之研究。國立中
    央大學碩士論文,94 頁。
    錢映真,2001:利用UHF雷達進行降水粒子之辨識分類及垂直速度、粒徑大小之分
    析研究,國立中央大學碩士論文,115 頁
    張偉裕,2002:利用雨滴譜儀分析雨滴粒徑分布(納莉颱風個案)。國立中央大學
    碩士論文,95 頁。
    林位總,2004:利用二維雨滴譜儀研究雨滴譜特性。國立中央大學碩士論文。89
    頁。
    簡巧菱,2006:台灣北部地區不同季節以及不同降水型態的雨滴粒徑分佈特性。
    國立中央大學碩士論文,119頁。
    毛又玉,2007:台灣北部地區層狀與對流降水的雨滴粒徑分佈特性。國立中央大
    學碩士論文,101頁。
    Atlas,D., R.C.Srivastava, and R.S.Sekhon, 1973:Doppler radar characteristic of precipitation at vertical incidence, Rev. Geophys ., 11, 1-35.
    Atlas, D., and C. W. Ulbrich. 1977:Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1-3cm Band. J. Appl. Meteor., 16, 1322-1331.
    Augustine, J. A., and E. J. Zipser, 1987: The use of wind profilers in a mesoscale
    experiment. Bull. Amer. Meteor. Soc., 68, 4-17.
    Balsley, B. B., and K. S. Gage, 1980: The MST radar technique: Potential for middle atmospheric studies. Pure Appl. Geophys.,118,452-493.
    Battan,L.J., Radar observations of the atmosphere, pp324, University of Chicago Press, Chicago, III, 1973.
    Carlson, C. A., and G. S. Forbes, 1989: A case study using kinematic quantities
    derived from a triangle of VHF Doppler wind profilers. J. Atmos. Oceanic
    Technol., 6, 769-778.
    Cheng, C.-P., and R. A. Houze Jr., 1979: Sensitivity of diagnosed convective fluxes to model assumptions. J. Atmos. Sci., 37, 774-783.
    Chong, M., and D. Hauser, 1989: A tropical squall line observed during the COPT 81 experiment in West Africa. Part II: Water budget. Mon. Wea. Rev., 117, 728-744.
    Churchill, D. D., and R. A. Houze Jr., 1984b: Mesoscale updraft magnitude and cloud-ice content deduced form the ice budget of the stratiform region of a tropical cloud cluster. J. Atmos. Sci., 41, 1717-1725.
    Currier, P. E., S. K. Avery, B. B. Balsley K. S. Gage, and W. L. Ecklud, 1992:
    Combined use of 50 MHz and 915MHz wind profilers in the estimation of
    raindrop size distributions. Geophys. Res. Lett., 19, 1017-1020.
    Donnadieu, G., 1982:Observation de deux changements des specters des
    gouttes de pluie dans une averse de nuages stratiformes. J. Atmos. Sci.,
    41, 933-960
    Ecklund, W. L., K. S. Gage, and C. R. Williams, 1995: Tropical precipitation studies
    using a 915 MHz wind profiler, Radio Sci., 30, 1055-1064.
    Edward A. B., Guifu Zhang, and J. Vivekanandan, 2004: Drop Size Distribution
    Retrieval with Polarimetric Radar: Model and Application. J. Atmos. Meteor., 43,
    461-475.
    Fukao, S., K. Wakasugi, T. Sato, S. Morimoto, T. Tsuda, I. Hirota, I. Kimura, and S.
    Kato, 1985: Direct measurement of air and precipitation particle motion by
    very high frequency Doppler radar. Nature, 316, 712-214.
    Gage, K. S., and B. B. Balsley, 1978: Doppler radar probing of the clear atmosphere.
    Bull. Amer. Meteor. Soc., 59, 1074-1093.
    ____,K.S., and B.B.Balsley, 1980: On the scattering and reflection mechanisms contributing to clear-air radar echoes from the troposphere, stratosphere, and mesosphere, Radio Sci., 15, 243-257.
    ____, K. S., C. R. Williams, and W. L. Ecklund, 1994: UHF wind profilers: A new
    toll for diagnosing tropical convective cloud systems. Bull. Amer. Meteor.
    Soc., 75, 2289-2294.
    Gamache, J. F., and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118-135.
    Gossard, E. E., 1988: Measuring drop-size distributions in clouds with
    clear-air sensing Doppler radar. J. Atmos. Oceanic Technol., 5, 640-649.
    Green J. L., R. H. Winkler, J. M. Warnock, W. L. Clark, K. S. Gage, and T. E.
    VanZandt, 1978: Observations of enhanced clear air reflectivity associated
    with convective clouds. 18th Int. Conf. On Radar Meteorology, Atlanta, GA,
    Amer. Meteor. Soc.,88-93.
    He, H., W. Mcginnis, Z. Song, and M. Yanai, 1987: Onset of the Asian summer
    monsoon in 1979 and the effect of the Tibetan Plateau. Mon. Wea. Rev.,
    115,1966-1995.
    Hermes, L. G., 1991: Comparisons of rawinsonde-deduced kinetic and
    thermodynamic quantities with those deduced from VHF profiler observations.
    Mon. Wea. Rev., 119, 1693-1712.
    Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall line system. Mon. Wea. Rev., 105, 1540-1567.
    Huggel, A., W. Schmid, and A. Waldvogel, 1996:Raindrop size distributions
    and the radar bright band. J. Appl. Meteor., 35, 1688-1701
    Johnson, R. H., and D. L. Bartels, 1992: Circulations associated with a
    mature-todecayingmidlatitude mesoscale convective system. Part II :
    upper-level feature. Mon. Wea. Rev., 120, 1301-1320.
    Knight, C. A., and L. J. Miller, 1993: First radar echos from cumulus clouds. Bull.
    Amer. Meteorol. Soc., 74, 179-188.
    Kozu, T., K. Nakamura, 1991: Rainfall Parameter Estimation from Dual-Radar Measurements Combining Reflectivity Profile and Path-integrated Attenuation, J. Atmos. Oceanic Technol., 8, 259-270.
    Larsen, M. F., and J.Rottger, 1987: Observation of thunderstorm reflectivities and Doppler velocities measured at VHF and UHF, J. Atmos. Oceanic Technol., 4, 151-159.
    Larsen, M. F., and J. Röttger, 1982: VHF and UHF Doppler radar as tools for
    synoptic, research. Bull. Amer. Meteor. Soc., 63, 996-1008.
    Leary, C. A., 1984: Precipitation structure of the cloud clusters in a tropical easterly wave. Mon. Wea.Rev., 112, 313-325.
    Lee, G. W., 2006: Sources of Errors in Rainfall Measurements by Polarimetric Radar: Variability of Drop Size Distributions, Observational Noise, and Variation of Relationships between R and Polarimetric Parameters. J. Atmos. Oceanic Technol., 23, 1005-1028.
    Lucas, C., A. D. MacKinnon, R. A. Vincent, and P. T. May, 2004: Raindrop Size
    Distribution Retrievals from a VHF Boundary Layer Profiler. J. Atmos.
    Oceanic Technol., 21, 45-60.
    Marshall, J.S., and W. M. K. Palmer, 1948:The Distribution of raindrop with
    Size. J. Meteor., 5, 165-166
    Martner, B. E., D. B. Wuertz, B. B. Stankov, R. G. Strauch, E. R. Westwater, K. S.
    Gage, W. L. Ecklund, C. L. Martin, and W. F. Dabberot, 1993: An evaluation
    of wind profiler, RASS, and microwave radiometer performance. Bull. Amer.
    Meteor. Soc., 74, 599-613.
    Neiman, P. J., M. A. Shapiro, 1989: Retrieving Horizontal Temperature Gradients and Advections from Single-Station Wind Profiler Observations. Mon. Wea. Rev., 4, 222-233.
    Neiman, P. J., P. T. May, and M. A. Shapiro, 1992: Radio acoustic sounding system
    (RASS) and wind profiler observations of lower- and midtropospheric weather
    systems, Mon. Wea. Rev., 120, 2298-2313.
    Rajopadhyaya, D. K., P. T. May, and R. A. Vincent, 1993: A general approach to the
    retrieval of raindrop size distributions from wind profiler Doppler spectra :
    Modeling results. J. Atmos. Oceanic Technol., 10, 710-717.
    ____, D. K., P. T. May, and R. A. Vincent, 1994: The retrieval of ice particle
    size information from VHF wind profiler Doppler spectra. J. Atmos. Oceanic
    Technol., 11, 1559-1568.
    Ralph, F. M., 1995: Using radar-measured radial vertical velocities to distinguish
    precipitation scattering from clear-air scattering. J. Atmos. Oceanic Technol.,
    12, 257-267.
    ____, F. M., P. J. Neiman, D. W. van de Kamp, and D. C. Law, 1995: Using spectral
    moment data from NOAAs 404-MHz radar wind profilers to Observe
    precipitation. Bull. Amer. Meteor. Soc., 76, 1717-1739.
    Rogers, R. R., W. L. Ecklund, D. A. Carter, K. S. Gage, and S. A. Ethier, 1993:
    Research application of a boundary-layer wind profiler. Bull. Amer. Meteor.
    Soc., 74, 567-580.
    Shapiro, M. A., T. Hample, and D. W. van de Kamp, 1984 : Radar wind profiler
    observations of fronts and jet streams. Mon. Wea. Rev., 112, 1263-1266.
    Smith, W. L., H. E. Revercomb, H. B. Howell, H. M. Woolf, Ro. O. Knuteson , R. G.
    Decker, M. J. Lynch, E. R. Westwater, R. G. Strauch, K. P. Moran, B. Stankov,
    M. J. Falls, J. Jodan, M. Jacobsen, W. F. Dabberdt, R. McBeth, G. Albright, C.
    Wright, P. T. May, and M. T. Decker, 1990: GAPEX: A ground-based
    atmospheric profiling experiment. Bull. Amer. Meteor. Soc., 71, 310-318.
    Spencer, P. P., F. H. Carr, and C. A. Doswell III, 1996 : Diagnosis of an amplifying
    and decaying baroclinic wave using wind profiler data. Mon. Wea. Rev.,
    124,209-223.
    Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone, 1984:
    Characteristics through the melting layer of stratiform clouds. J. Atmos.
    Sci., 41, 3227-3237
    Tatarskii,V.I., 1961:Wave propagation in a turbulent media, pp285., McGraw-Hill, New York.
    Testud, A., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001:The
    Concept of “Normalized” Distribution to Describe Raindrop Spectra:
    A Tool for Cloud Physics and Cloud Remote Sensing. J. Appl. Meteor.,
    40, 1118-1140
    Tokay, A., and D. A. Short, 1996 : Evidence from Topical Raindrop Spectra
    of the Origin of Rain from Stratiform versus Convection clouds. J. Appl.
    Metero. Sci., 35, 355-371.
    ____, D. A. Short, C. R. Williams, W. L. Ecklund, K. S. Gage, 1999: Tropical rainfall
    associated with convective and stratiform clouds: Intercomparison of
    disdrometer and profiler measurements. J. Appl. Meteor. 38, 302-320.
    Thurai, M., G. J. Huang, V. N. Bringi, W. L. Randeu, and M. Schönhuber, 2007: Drop
    Shapes, Model Comparisons, and Calculations of Polarimetric Radar
    Parameters in Rain. J. Atmos. Oceanic Technol., 24, 1019-1032.
    Ulbrich, C. W., and D. Atlas, 1983:Nature Variations in the Analytical Form
    of the Raindrop Size Distribution. J. Climate Appl. Meteor., 22,
    1764-1774
    Ulbrich, C. W., and D. Atlas, 1984:Assessment of the contribution of
    differential polarization to improved rainfall measurements. Radio Sci.,
    19, 49-57
    Yanai, M., C. Li, and Z. Song, 1992: Seasonal heating of Tibetan Plateau and its
    effects on the evolution of Asian summer monsoon. J. Meteor. Soc. Japan, 70,
    319-351.
    Yeh,K.C., and C.H.Liu, Theory of ionosphere waves, Academic Press, New York, pp464., 1974.
    Zamora, R. J., M. A. Shapiro, and C. A. DoswellⅢ, 1987 : The diagnosis of upper
    tropospheric divergence and ageostrophic wind using profiler wind
    observations. Mon. Wea. Rev., 115, 871-884.
    Zhang,G., J.Vivekanandan, E.Brandes, R.Meneghini, and T.Kozu, 2003: The
    shape-slope relation in observed gamma raindrop size distribution: Statistical
    error or useful information? J. Atmos. Oceanic Technol., 20 1106-1119.
    Wait,J.R., Electromagnetic waves in stratified media, Pergamon Press, New York ,pp305., 1962.
    Waldvogel, A., 1974:The N0 jump of raindrop spectra. J. Atmos. Sci., 31,
    1068-1078.
    Wakasugi, K. A., S. Fukao, A. Mizutani, and M. Matsuo, 1985: Air and precipitation
    particle motions within a cold front measured by MU VHF radar. Radio Sci.,
    20, 1233-1240.
    Wei, T., and R. A. Houze Jr., 1987: The GATE squall line of 9-10 Auguest 1974. Adv. Atmos. Sci., 4, 85-92.
    Williams, C. R.,W. L. Ecklund, and K.S. Gage, 1995: Classification of precipitating
    clouds in the Tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol., in press.
    Wuertz, D. B., B. L. Weber, R. G. Strauch, A. S. Frisch, C. G. Little, D. A. Merritt, K.
    P. Moran, and D. C. Welsh, 1988: Effects of precipitation on UHF wind
    profiler measurements. J. Atmos. Oceanic Technol., 5, 450-465.

    QR CODE
    :::