| 研究生: |
郭以謙 Yi-chin KUO |
|---|---|
| 論文名稱: |
Trichoderma reesei與Aspergillus niger共醣化稻稈及Saccharomyces cerevisiae生產生質酒精之研究 Trichoderma reesei and Aspergillus niger co-saccharification rice straw and production of bioethanol by Saccharomyces cerevisiae |
| 指導教授: |
徐敬衡
Ching-heng Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | Trichoderma reesei 、Aspergillus niger 、Saccharomyces cerevisiae 、酵素 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
近年來由於能源危機和石油價格高漲,以農業廢棄物做為基質生產生質酒精為研究議題漸受重視,也有許多文獻及研究成果,足以說明生質能源目前占有的地位。
本研究的發酵策略是透過液態單獨培養兩株真菌A.niger及T.reesei分別生產纖維水解酵素,然後以增加接菌量的方式來提升酵素的產量,並且以自行生產的豆渣取代複合式氮源來降低發酵成本,在進入醣化階段時,經過實驗分析醣化之物理條件以及適當的醣化時機後以Mixing的方式混合兩真菌的酵素發酵液進行AT共醣化,在共醣化階段欲發揮AT酵素液水解的極限而在該階段總共添加了兩次稻稈,最後將醣化階段的醣化液應用於Saccharomyces cerevisiae酒精發酵。
由實驗結果顯示,本研究第一階段的AT混合酵素液最大活性為0.511 FPU/mL,而在第二階段可以從3g稻稈醣化出的還原醣累積量為21.25g/L,水解效率達到85.2%,在第三階段酒精發酵的酒精生產量為7.172 g/L,轉化率為76.7%。
Abstract
The study is to develop a fermentation strategies by liquid monocultural two strains of fungi A.niger and T.reesei production hydrolysis enzymes, and then to increase the inoculum way to enhance the production of enzymes, and to replace the nitrogen compound source by self-production of bean dregs to reduce the cost of the fermentation process, when entering the saccharification stage,after study the physical conditions and the timing of saccharification,and then by Mixing a way to mix the enzyme fermentation broth of two fungi called AT co-saccharification.
To achieve maximum effect of hydrolysis of AT enzyme solution,at co-saccharification stage the rice straw was added twice the saccharification stage of the hydrolyzate,used in the final stage of ethanol fermentation by Saccharomyces cerevisiae.Experimental results show that, AT mixed enzyme solution of the present study the maximum cellulase activity was found to be 0.511 FPU / mL, at optimum condition and from the saccharification of 3g rice straw in the second stage were obtained the maximum reducing sugar accumulation of 21.25g / L, the hydrolysis efficiency of 85.2 %, the amount of ethanol produced of 7.172 g / L in the final stage, the conversion yield was 76.7%.
第六章 參考文獻
1. Parameswaran Binod *, R.S., Reeta Rani Singhania, Surender Vikram, Lalitha Devi, and N.K. Satya Nagalakshmi, Rajeev K. Sukumaran, Ashok Pandey, Bioethanol production from rice straw: An overview. 2010.
2. Rashmi Kataria, S.G., Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. 2011.
3. Aftab Ahamed, P.V., Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. 2008.
4. Gurpreet Singh Dhillona, b., Harinder Singh Oberoia, Surinder Kaurb,c, and S.K.B. Sunil Bansald, ∗, Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. 2011.
5. Namita Bansal a, R.T.b., Raman Soni c, Sanjeev Kumar Soni a,⇑, Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. 2012.
6. Carmen Sánchez, Lignocellulosic residues: Biodegradation and bioconversion by fungi. 2009.
7. Nathan Mosier a, C.W.b., Bruce Dale c, Richard Elander d, Y.Y. Lee e, Mark Holtzapple f, Michael Ladisch a,*, Features of promising technologies for pretreatment of lignocellulosic biomass. 2005.
8. Ilan Levy a, Z.S.b., Oded Shoseyov a,*, Modification of polysaccharides and plant cell wall by endo-1,4-b-glucanase and cellulose-binding domains. 2002.
9. Ye Sun, J.C., Hydrolysis of lignocellulosic materials for ethanol production: a review. 2002.
10. M.B., Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. 2011.
11. Murrayh, S.J.B.D.W.D., BIOCONVERSION OF FOREST PRODUCTS INDUSTRY WASTE CELLULOSICS TO FUEL ETHANOL :A REVIEW. 1995.
12. 黃柏傑, 探討以 Aspergillus niger 分解稻桿及 Saccharomyces cerevisiae 生產生質酒精之研究. 2013.
13. Rattiya Waeonukula, b., c,1, Akihiko Kosugi a,⇑,1, Chakrit Tachaapaikoon c, Patthra Pason c, and P.P.a. Khanok Ratanakhanokchai b, Lan Denga, Masayoshi Saito a, Yutaka Mori a, Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii b-glucosidase. 2012.
14. Zhiyou Wen *, W.L., Shulin Chen, Production of cellulase/b-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. 2005.
15. Bisaria, V.S., S. Mishra, and D.E. Eveleigh, Regulatory aspects of cellulase biosynthesis and secretion. Critical reviews in biotechnology, 1989. 9(2): p. 61-103.
16. Bhat, M. and S. Bhat, Cellulose degrading enzymes and their potential industrial applications. Biotechnology advances, 1997. 15(3): p. 583-620.
17. Alexander, M., Introduction to soil microbiology. 1977: John Wiley & Sons.
18. Chen Li, Z.Y., Ronglin He Can Zhang, Dongyuan Zhang, Shulin Chen, Lijuan Ma∗, Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. 2013.
19. Hairong Xiong, N.v., Matti Leisola, Ossi Turunen∗, Influence of pH on the production of xylanases by Trichoderma reesei Rut C-30. 2004.
20. Vandana Rana, A.D.E., Philip Teller, Birgitte K. Ahring ⇑, On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. 2014.
21. Mandels, M. and E.T. Reese, Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. Journal of Bacteriology, 1957. 73(2): p. 269.
22. Béguin, P.G., Neil R Kilburn, Douglas G Miller, Robert C O'neill, Gary P Warren, R Antony J, Cloning of cellulase genes. Critical reviews in biotechnology, 1987. 6(2): p. 129-162.
23. 黃俊凱, 探討光照對 Saccharomyces cerevisiae 生產乙醇之影響. 中央大學化學工程與材料工程學系學位論文, 2008: p. 1-100.
24. K. Srilekha Yadav, S.N., G. Sai Prashanthi, Lanka Sateesh, L. Venkateswar Rao ⇑, Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. 2011.
25. Tsai, C.-c., 探討光品質和漁業廢棄物對 Chlorella sp. 和 Saccharomyces cerevisiae 共培養生產油脂之影響. 2011.
26. Ken-Lin Changa, J.T.-a.a., Jung-Feng Hsieh b, Bay-Ming Oua, and K.R.c. Shan-He Chena, Po-Jung Huanga, Shui-Tein Chena,d,*, Enhanced enzymatic conversion with freeze pretreatment of rice straw. 2011.
27. Rajeev K. Sukumaran, R.R.S., Gincy Marina Mathew, Ashok Pandey*, Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. 2009.
28. Farzad Moradi a, H.A.a., Sabihe Soleimanian-Zad b, Mohammad Reza Ehsani a, Keikhosro Karimi a,c,⇑, Improvement of acetone, butanol and ethanol production from rice straw by acid and alkaline pretreatments. 2013.
29. Sanjeev K. Sharma ∗, K.L.K., Harmeet S. Grewal, Enzymatic saccharification of pretreated sunflower stalks. 2002.
30. Muhammad Sohail, R.S., Aqeel Ahmad and Shakeel Ahmed Khan, Cellulase production from Aspergillus niger MS82: effect of temperature and pH. 2009.
31. Aftab Ahamed, P.V., Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. 2008.
32. Marcel Gutierrez-Correa a*, L.P.a., Patricia Moreno ~, Robert P. Tengerdy u, Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. 1999.
33. 施智雄, 利用鹼和 Aspergillus niger 處理稻稈以提升甲烷生產於厭氧共發酵系統. 2013.