跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊銘駿
Ming-Jun Yang
論文名稱: 感知無線電中以多階威能濾波器為基礎之頻譜偵測
Multistage Wiener Filter Based Spectrum Sensing in Cognitive Radio
指導教授: 陳永芳
Yung-Fang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 41
中文關鍵詞: 感知無線電多階威能濾波器頻譜偵測
外文關鍵詞: multistage Wiener filter, spectrum sensing, cognitive radio
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出在感知無線電中應用降維多階威能濾波器為基礎之固定假警報機率之頻譜偵測。頻譜偵測為感知無線電中極為重要之一環,於多重路徑衰減之環境下,次要使用者利用多天線技術提高對主要使用者訊號之偵測效能;次要使用者進行偵測決策前,廣義旁瓣對消器用以抑制干擾及雜訊之影響,爾後利用自適應匹配濾波器固定假警報機率偵測法進行決策;在短暫偵測時間所得有限取樣數之條件下,降維處理法可達減少計算複雜度及可靠效能之目的。如模擬結果所示,以降維多階威能濾波器為基礎之自適應匹配濾波器固定假警報機率偵測器,於有限取樣數下比滿秩濾波器為基礎之偵測器效能較佳。


    In this thesis, a reduced-rank multistage Wiener filter based CFAR detector is applied for spectrum sensing in cognitive radio. Spectrum sensing is an essential component in cognitive radio. In order to enhance the performance of primary user signal detection under the multipath fading environments, a multiple antenna technique is employed at the secondary user. In addition, the general sidelode canceller (GSC) is utilized prior to the detection to suppress the effect of interference and noise. And then the AMF CFAR test is utilized for the secondary user. For the purpose of reduction of computational complexity and reliable performance, reduced-rank processing is a well-known technique under the condition of finite sample support in short sensing time. The numerical results show that the reduced-rank multistage Wiener filter based AMF CFAR detector outperforms the full rank filter-based detector in a finite number of samples.

    Chapter1 Introduction 1 1.1 Cognitive Radio 1 1.2 Spectrum Sensing 2 1.3 Orthogonal Frequency Division Multiplexing 4 1.4 Minimum Variance Distortionless Response Beamforming 5 1.5 Generalized Sidelobe Canceller 8 1.6 Wiener Filter Decomposition 9 1.7 Organization 11 Chapter2 System Model and Problem Formulation 12 Chapter3 Proposed Algorithm 16 3.1 AMF CFAR Test 16 3.2 Reduced-rank Multistage Wiener Filter Based Detector 20 Chapter4 Simulation Results 26 Chapter5 Conclusion 29 Bibliography 30

    [1]J. Mitola and G. Q. Maguire, “Cognitive radios: making software radios more personal,” IEEE Personal Commun., vol. 6, no. 4, pp. 13–18, Aug. 1999.
    [2]S. Haykin, “Cognitive Radio: Brain-Emprowered Wireless Communications,” IEEE JSAC, vol. 23, no. 2, pp. 201–220, Feb. 2005.
    [3]Y.-C. Liang, K.-C. Chen, G. Y. Li, and P. Mahonen, “Cognitive Radio Networking and Communications: An Overview,” IEEE Trans. on Vehic. Tech., vol. 60, no. 7, pp. 3386–3407, Sep. 2011.
    [4]T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Commun. Surveys Tuts., vol. 11, no. 1, pp. 116–130, First Quarter 2009.
    [5]S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc. IEEE, vol. 97, no. 5, pp. 849–877, May 2009.
    [6]F. F. Digham, M. S. Alouini, and M. K. Simon, “On the Energy Detection of Unknown Signals Over Fading Channels,” IEEE Trans. Commun., vol.55, no.1, pp.21–24, Jan. 2007.
    [7]A. Sonnenschein and P. M. Fishman, “Radiometric detection of spreadspectrum signals in noise of uncertain power,” IEEE Trans. Aerospace Electronic Systems, vol. 28, no. 3, pp. 654–660, Jul. 1992.
    [8]R. Tandra and A. Sahai, “Fundamental limits on detection in low SNR under noise uncertainty,” in Proc. WirelessCom, vol.1, pp. 464- 469, 13–16 June 2005
    [9]Y. H. Zeng and Y.-C. Liang, “Maximum-minimum eigenvalue detection for cognitive radio,” in Proc. IEEE Int. Symp. PIMRC, Athens, Greece, pp. 1–5, Sep. 2007.
    [10]Y. Zeng and Y. C. Liang, “Eigenvalue-based spectrum sensing algorithms for cognitive radio,” IEEE Trans. Commun., vol. 57, no. 6, pp. 1784–1793, Jun. 2009.
    [11]W. A. Gardner, “Exploitation of spectral redundancy in cyclostationary signals," IEEE Signal Processing Mag., vol. 8, pp. 14–36, Apr. 1991.
    [12]D. Cabric, A. Tkachenko, and R. Brodersen, “Spectrum sensing measurements of pilot, energy, and collaborative detection,” in Proc. IEEE Military Commun. Conf., pp. 1–7, Oct. 2006.
    [13]H. A. Mahmoud, T. Yucek, and H. Arslan, “OFDM for cognitive radio: Merits and challenges,” IEEE Wireless Commun. Mag., vol. 16, no. 2, pp. 6–15, Apr. 2009.
    [14]S. Bokharaiee, Ha H. Nguyen, and Ed Shwedyk, “Blind Spectrum Sensing for OFDM-Based Cognitive Radio Systems,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 858–871, Mar. 2011.
    [15]S. Chaudhari, V. Koivunen, and H. V. Poor, “Autocorrelation-Based Decentralized Sequential Detection of OFDM Signals in Cognitive Radios,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2690–2700, Jul. 2009.
    [16]A. Taherpour, M. Nasiri-Kenari, and S. Gazor, “Multiple antenna spectrum sensing in cognitive radios,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 814-823, Feb. 2010.
    [17]P. Wang, J. Fang, N. Han, and H. Li, “Multiantenna-assisted spectrum sensing for cognitive radio,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1791–1800, May 2010.
    [18]L. Shen, H. Wang, W. Zhang, and Z. Zhao, “Multiple Antennas Assisted Blind Spectrum Sensing in Cognitive Radio Channels,” IEEE Commun. Lett., vol. 16, no. 1, pp. 92–94, Jan. 2012.
    [19]V. Kuppusamy and R. Mahapatra, “Primary user detection in OFDM based MIMO cognitive radio,” in Proc. 3rd International Conf. Cognitive Radio Oriented Wireless Netw. Commun. (CrownCom 2008), pp. 1-5, May 2008.
    [20]F. C. Robey, D. L. Fuhrman, E. J. Kelly, and R. Nitzberg, “A CFAR adaptive matched filter detector,” IEEE Trans. Aerosp. Electron Syst., vol. 29, no. 1, pp. 208–216, Jan. 1992.
    [21]J. S. Goldstein and I. S. Reed, “Theory of partially adaptive radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 33, no. 4, pp. 1309-1325, Oct. 1997.
    [22]J. S. Goldstein, I. S. Reed, and P. A. Zulch, “Multistage partially adaptive STAP CFAR detection algorithm,” IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 2, pp. 645–661, Apr. 1999.
    [23]J. S. Goldstein, I. S. Reed, P. A. Zulch, andW. L. Melvin, “A multistage STAP CFAR detection technique,” in Proc. IEEE Radar Conf., Dallas, TX, pp. 111–116, May 1998.
    [24]J. S. Goldstein, I. S. Reed, and L. L. Scharf, “A multistage representation of the wiener filter based on orthogonal projections,” IEEE Trans. Inf. Theory, vol. 44, pp. 2943–2959, Nov. 1998.
    [25]P. A. Zulch, J. S. Goldstein, J. R. Guerci, and I. S. Reed, “Comparison of reduced-rank signal processing techniques,” in Conf. Rec. 32nd Asilomar Conf. Signals, Syst., Comput., Monterey, CA, Oct. 1998.
    [26]G. Dietl and W. Utschick, “On reduced-rank approaches to matrix Wiener filters in MIMO systems,” Proc. ISSPIT, Daarmstadt, Germany 2003.
    [27]S. Werner, M. With, and V. Koivunen, “Householder multistage wiener filter for space-time navigation receivers”, IEEE Trans. Aerosp. Electron. Syst., vol.43, no.3, pp. 975–988, Jul. 2007.
    [28]Y. F. Chen and C. S. Wang, “Adaptive antenna arrays for interference cancellation in OFDM communication systems with virtual carriers,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1837–1844, Jul. 2007.

    QR CODE
    :::