跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林進貴
C-K Lin
論文名稱: 含Sc、Cu之A201合金銲條的銲補性
指導教授: 李勝隆
Sheng-long Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系在職專班
Executive Master of Mechanical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 59
外文關鍵詞: hot cracking, TIG, A201
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的在探討含Sc、Cu之A201合金焊條的焊補性及常溫、高溫機械性質之研究。
    結果顯示Al-Cu-Mg-Ag-Sc-Zr合金,於凝固時便晶出Al3(Sc,Zr)相,使晶粒細化。而W(Al5.4-8Cu6.6-4Sc)相的形成消耗了部分Cu元素,且無法經由固溶處理回溶於基地內,使得Cu原子固溶量減少,導致θ’及Ω相析出量減少而降低合金強度及硬度。提高Cu含量後,可增加鋁基地中Cu原子固溶量,提升材料強度。
    此外,以含Sc、Cu之A201銲料合金,於母材A201合金上實施TIG銲接後之銲件,其銲道組織皆為等軸細小晶粒,且無熱裂發生;銲件經T7後之常溫(25℃)抗拉強度為母材A201合金之91%,延性和母材A201合金相近;銲件經T7後之高溫(150℃、230℃) 抗拉強度分別為母材A201合金之90%及95%,延性和母材A201合金相近。


    The study for the purpose of fusion welding and Mechanical Properties of room temperature and high temperature of A201 alloy casting with A201 alloy containing Sc and Cu as filler metal .
    Addition of Sc and Zr to Al-Cu-Mg-Ag alloys produces grain refinement due to the formation of primary Al3(Sc,Zr) intermetallic phase during solidification. The formation of
    W(Al5.4-8Cu6.6-4Sc) phase consumes the parts of Cu content, and can’t dissolve in subsequent solution treatment. As a result, the available amount of Cu which is dissolved in matrix reduces, diminishing the precipitates of Ω and θ’ phase, and the hardness and strength decrease. After increasing Cu content, the available amount of Cu in Al-matrix will be raised, and the strength of material will be promoted.
    Further A201 alloy containing Sc and Cu as filler metal,the base metal is A201 alloy,in TIG (tungsten inert gas) welds.After welding,the grain of fusion zone fine equiaxed dendritic structure and has no hot cracking .The ultimate strength at room temperature of welding bar that has been T7 is 91% of A201 alloy.The elongation at room temperature of welding bar that has been T7 is similar to A201 alloy. The ultimate strength at high temperature(150℃、230℃) of welding bar that has been T7 is 90% and 95% of A201 alloy separately.The elongation at high temperature(150℃、230℃) of welding bar that has been T7 is approaching A201 alloy.

    總 目 錄 摘要......................................................Ⅰ 謝誌......................................................Ⅲ 總目錄....................................................Ⅴ 圖目錄....................................................Ⅶ 表目錄....................................................Ⅷ 壹、前言....................................................1 1.1 高強度鑄造用鋁合金近二十年在國防工業之應用.........1 1.2 A201高強度鋁合金之文獻回顧.........................2 1.3 A201鑄造用鋁合金之銲接性...........................5 1.4 微量過渡元素(Sc、Zr等)對銲接及其他特性之效用.....7 1.5 實驗目的與焊料合金設計............................11 貳、實驗步驟與方法.........................................13 2.1 製程部分:合金熔配、銲接及熱處理....................14 2.1-1 合金熔配與成分分析..................................14 2.1-2 銲接製程............................................14 2.1-3 熱處理..............................................17 2.1-4 微結構分析..........................................17 2.1-4-1 金相OM觀察.........................................17 2.1-5 導電度(%IACS)量測..................................17 2.1-6 電子微探儀(EPMA)....................................17 2.1-7 微差掃描熱分析儀(DSC).............................18 2.1-8 穿透式電子顯微鏡(TEM).............................18 2.1-9 掃描式電子顯微鏡(SEM).............................18 2.1-10 機械性質分析......................................18 2.1-10-1 硬度試驗..........................................18 2.1-10-2 拉伸試驗..........................................18 參、結果與討論.............................................20 3.1-1 微結構分析........................................20 3.1-1-1 金相觀察..........................................20 3.1-2 導電度(%IACS)分析................................25 3.1-3 微差掃瞄熱分析(DSC)...............................26 3.1-4 機械性質分析......................................28 3.1-4-1 硬度試驗..........................................28 3.1-4-2 拉伸試驗..........................................29 3.2 經TIG(Tungsten inert gas ) 銲接後之性質分析.......31 3.2-1 微結構分析........................................31 3.2-1-1 金相觀察..........................................31 3.2-2 常溫機械性質分析..................................36 3.2-2-1 硬度試驗..........................................36 3.2-2-2 拉伸試驗..........................................38 3.2-3 高溫(150℃、230℃) 機械性質.......................40 肆、結論...................................................43 伍、參考資料...............................................45

    1. R. E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd
    ed., PWS Publishing Company, 1991, pp.697-698
    2. J. Raffin, US Patent No. 3475166, Oct. 26, 1969
    3. J. R. Davis, “Aluminum and Aluminum alloys”, ASM Specialty Handbook, ASM
    International, 1994, pp.706-707
    4. I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W.
    E. Borbidge and S. Rogers, “After Concorde:Evaluation of creep resistant
    Al-Cu-Mg-Ag Alloys”, Materials Science and Technology, 1999, Vol.15, pp.861- 868
    5. 鄭嘉仁, “Mn含量對A201鋁合金晶粒成長之影響”, 國立中央大學機械工程研究所碩士
    論文, 1993
    6. N. J. Davidson, “Review of the Mechanical Properties, Reliability and Usage
    of Ultra High Strength Aluminum and Application”, AFS, 1988, pp.232-247
    7. B. C. Muddle and I. J. Polmear, “The Precipitate Ω Phase in Al-Cu-Mg-Ag
    Alloys”, Acta Metall., 1989, Vol.37, pp.777-789
    8. R. J. Chester and I. J. Polmear, “TEM Investigation of Precipitates in Al-
    Cu-Mg-Ag and Al-Cu-Mg Alloys”, Micron, 1980, Vol.11, pp.311-312
    9. K. M. Knowles and W. M. Stobbs, “The Structure of {100} Age-hardening
    Precipitates in Al-Cu-Mg-Ag Alloys”, Acta Cryst., 1988, B44, pp.207-227
    10.J. R. Davis, “Aluminum and Aluminum alloys”, ASM Specialty Handbook, ASM
    International, 1994, pp.25
    11.S. P. Ringer, W. Yeung, B. C. Muddle and I. J. Polmear, “Precipitate
    Stability in Al-Cu-Mg-Ag Alloys Aged at High Temperatures”, Acta Metall.
    Mater., 1994, Vol.42, pp.1715-1725
    12.I. J. Polmear and M. J. Couper, “Design and Development of an Experimental
    Wrought Aluminum Alloy for Use at Elevated Temperature”, Metallurgical
    Transaction A, 1988, Vol.19A, pp.1027- 1035
    13.I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W.
    E. Borbidge and S. Rogers, “After Concorde: Evaluation of Creep Resistant
    Al- Cu-Mg-Ag Alloys”, Materials Science and Technology, 1999, Vol.15,
    pp.861-868
    14.K. Hono, N. Sano, S. S. Babu, R. Okano and T. Sakurai, “Atom Probe Stuty of
    the Precipitation Process in Al-Cu-Mg-Ag Alloys”, Acta Metall. Mater.,
    1993, vol.41, pp.829-838
    15.R. K. Wyss and R. E. Sanders, “Microstructure-Property Relationship in a
    2xxx Aluminum Alloy with addition”, Metallurgical Transaction A, 1988,
    Vol.19A, pp.2523-2530
    16.張志鴻, “銀含量對於A201鑄造鋁合金Ω相析出影響”, 國立中央大學機械工程研究所
    碩士論文, 2000
    17.A. Grag, Y. C. Chang and J. M. Howe, “Precipitation of the Ω Phase in an
    Al-4.0Cu-0.5Mg alloy”, Scripta Metallurgica et Materialia, 1990, Vol.24,
    pp.677-680
    18.J. A. Taylor, B. A. Parker and I. J. Polmear, “Precipitation in Al-Cu-Mg-Ag
    Casting Alloy”, Metal Science, 1978, Vol.12, No.10, pp.478-482
    19.K. Hono, T. Sakurai and I. J. Polmear, “Pre-Precipitate Clustering in an Al-
    Cu-Mg-Ag Alloy”, Scripta Metallurgica et Materialia, 1994, Vol.30, No.6,
    pp.695-700
    20.S. P. Ringer, K. Hono, I. J. Polmear and T. Sakurai, “Nucleation of
    Precipitates in Aged Al-Cu-Mg-(Ag) Alloys with High Cu:Mg Ratios”, Acta
    Materialia, 1996, Vol.44, No.5, pp.1883-1898
    21.L. Reich, M. Murayama and K. Hono, “Evolution of Ω Phase in an Al-Cu-Mg-Ag
    Alloy – A Three-Dimensional Atom Probe Study”, Acta Materialia, 1998,
    Vol.46, No.17, pp.6053-6062
    22.O. Beffort, C. Solenthaler, P. J. Uggowitzer and M. O. Speidel, “High
    toughtness and high strength spray-deposited AlCuMgAg-base alloys for use at
    moderately elevated temperatures”, Materials Science and Engineering A,
    1995, Vol.191A, pp.121-134
    23.R. E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd
    ed., PWS Publishing Company, 1991, pp.534-535
    24.T. D. Burleigh, “The Postulated Mechanisms for Stress Corrosion Cracking of
    Aluminum Alloys”, Corrosion, 1991, Vol.47, pp.89-98
    25.M. S. Misra and K. J. Oswalt, “Corrosion Behavior of Al-Cu-Ag (A201)
    Alloy”, Metals Engineering Quarterly, 1976, pp.39-44
    26.“Aerospace Material Specification”, AMS, 1987, 4235A, AMS4236
    27.劉偉隆,林淳杰,曾春風 ,陳文照編譯 “ 物理冶金第三版 ”, 全華科技圖書股份有限公
    司, 2004, pp.14-45
    28.B. Hemsworth, T. Boniszewski and N. F. Eaton, “Classification and
    Definition of High Temperature Welding Cracks in Alloys”, Metal
    Construction & Brit. Welding Journal, 1969, Vol.1, pp.5-16
    29.F.Matsuda: Hot Crack Susceptibility of Metal , Advances in welding
    Metallurgy, JWS,1990,pp.26-58.
    30.J. Koziarski, “Some Considerations On Weldability Of Aluminum Alloys”,
    Welding Journal, 1953, pp.970-986
    31.J. R. Davis, “Aluminum and Aluminum alloys”, ASM Specialty Handbook, ASM
    International, 1994, pp.376-419
    32.J. C. Borland, “Generalized Theory of Super-Solidus Cracking in Weld and
    Casting”, Brit. Welding Journal, 1960, Vol.7, No.8, pp. 508-512
    33.Steeubergen and Thornton, “A Quantitative Determination of the condition
    for Hot Cracking During Welding for Aluminum Alloys”, Welding Journal,
    1970, Vol.2, pp.61-68
    34.J. B. Arthur, “Fusion Welding of 24S-T3 Aluminum Alloy”, Welding Journal,
    1955, pp.558-569
    35.S. Kou, “Welding Metallurgy”, John Wiley And Sons NY, 1987, pp.129-295
    36.R. P. Meister and D. C. Martin, “Welding of Aluminum and Aluminum Alloys”,
    Deffense Metals Information center, 1967, p.1
    37.W. I. Pumphrey and D. C. Moore, “Cracking during and after Solidification
    in some Aluminum-Copper-Magnesium Alloys of High Purity”, J. Inst. Metals,
    1948, Vol.73, pp.428-438
    38.W. I. Pumphrey and J. V. Lyons, “Cracking during the Casting and Welding of
    the More Common Binary Aluminum Alloys of Commercial Quality”, J. Inst.
    Metals, 1948, Vol.74, pp.439-455
    39.H. T. Kim, S. W. Nam and S. H. Hwang, “Study On the Solidification Cracking
    Behaviour of High Strength Aluminum Alloy Welds—Effect of Alloying Elements
    and Solidification Behaviours”, J. Mater. Sci., 1996, Vol.31, No.3, pp.2859-
    2864
    40.A. F. Norman, V. Drazhner and P. B. Prangnell, “Effect of Welding
    Parameters on the Solidification Microstructure of Autogenous TIG Welds in
    an Al-Cu-Mg-Mn Alloy”, Materials Science & Engineering A, 1999, Vol.259A,
    pp.53-64
    41.V. G. Davydov, T. D. Rostova, V. V. Zakharov, Yu. A. Filatov and V. I.
    Telagin, “Scientific Principles of Making an Alloying Addition of Scandium
    to Aluminum Alloys”, Materials Science & Engineering A, 2000, Vol.280A,
    pp.30-36
    42.A. F. Norman, P. B. Prangnell and R. S. McEwen, “The Solidification
    Behaviour of Dilute aluminum-Scandium Alloys”, Acta Materialia, 1999,
    Vol.46, pp.5715-5732
    43.聶若光、洪炎輝、伍員鵬、鄭榮瑞、葉建宏, “添加Sc對A201高強度鑄造用鋁合金機械
    性質影響之研究 ”, 中華民國鑄造工程學刊,第二十九卷,第四期,2003,pp.43-48
    44.L. K. Lamikov and G. V. Samsonov, “Soviet Non-Ferrous Metals Res.”(USSR),
    1964, vol.9, pp.79-83
    45.K. A. Gschneidner and F. W. Calderwood, “Bull. Alloy Phase Diagr.”, 1989,
    Vol.10, pp.34-38
    46.G. M. Novotny and A. J. Ardell, “Precipitation Of Al3Sc In Al-Sc Alloys”,
    Materials Science & Engineering A, 2001, Vol.318A, pp. 144-154
    47.“Applications of Scandium In Al-Sc Alloys”, Ashurst Technology Web Page
    (http://www.scandium.org/Sc-Al.htm)
    48.K. B. Hyde, A. F. Norman and P. B. Prangnell, “The Effect of Cooling Rate
    on the Morphology of Primary Al3Sc Intermetallic Particles in Al-Sc
    Alloys”, Acta Materialia, 2001, Vol.49, pp.1327-1337
    49.L. L. Rokhlin, T. V. Dobatkina, N. R. Bochvar and E. V. Lysova,
    “Investigation of phase equilibria in alloys of the Al-Zn-Mg-Cu-Zr-Sc
    system”, Journal of Alloys and Compounds, 2004, Vol.367, pp.10-16
    50.Z. Yin, Q. Pan, Y. Zhang and F. Jiang, “Effect of Minor Sc and Zr on the
    Microstructure and Mechanical Properties of Al-Mg Based Alloys”, Materials
    Science & Engineering A, 2000, Vol.280A, pp. 151-155
    51.B. Forbord, W. Lefebvre, F. Danoix, H. Hallem and K. Marthinsen, “Three
    dimensional atom probe investigation on the formation of Al3(Sc,Zr)-
    dispersoids in aluminim alloys”, Scripta Materialia, 2004, Vol.51, pp.333-
    337
    52.V. Ocenasek and M. Slamova, “Resistance To Recrystallization Due To Sc And
    Zr Addition to Al-Mg Alloys”, Material Characterization, 2001, Vol. 47,
    pp.157-162
    53.E. A. Marquis and D. N. Seidman, “Nanoscale Structure Evolution Of Al3Sc
    Precipitation in Al(Sc) Alloys”, Acta Materialia, 2001, Vol.49, pp.1909-1919
    54.D. N. Seidman, E. A. Marquis and D. C. Dunand, “Precipitation Strengthening
    at Ambient and Elevated Temperature of Heat- Treatable Al(Sc) Alloys”, Acta
    Materialia, 2002, Vol.50, pp.4021- 4035
    55.M. L. Kharakterova, “Phase Composition of Al-Cu-Sc Alloys at Temperatures
    of 450 and 500℃”, Izvestiya Akademii Nauk SSSR. Metally, 1991, No. 4,
    pp.195-199
    56.V. V. Zakharov and T. D. Rostova, “On the Possibility of Scandium Alloying
    of Copper-Containing Aluminum Alloys”, Metal Science and Heat Treatment,
    1995, Nol.37, No.1-2, pp.65-69
    57.A. F. Norman, K. B. Hyde, F. Costello, S. Thompson, S. Birely and P. B.
    Prangnell, “Examination of the Effect of Sc on 2000 and 7000 Series
    Aluminium Alloy Casting : For Improvements in Fusion Welding”, Materials
    Science & Engineering A, 2003, Vol.354A, pp. 188-198
    58.K. Yu, W. Li, S. Li and J. Zhao, “Mechanical Properties and Microstructure
    of Aluminum Alloy 2618 with Al3(Sc,Zr) Phases”, Materials Science &
    Engineering A, 2004, Vol.368A, pp.88-93
    59.簡朝棋, “A201鋁合金添加稀土元素後之機械性能研究”, 國立台灣大學材料科學與工
    程研究所碩士論文, 2002
    60.陳永斌, “微量Sc、Zr對Al-4.6Cu-0.3Mg-0.6Ag合金微結構與機械性質之影響”, 國立
    中央大學機械工程研究所碩士論文, 2004
    61.董孟軒, “ Sc與Cu含量對A201合金焊補特性研究 ”, 國立中央大學機械工程研究所
    碩士論文, 2005
    62.“ASTM E112-88”, Annual Book of ASTM Standards, 1990, Vol.03.NO.01
    63.A. K. Mukhopadhyay, “On the Nature of the Second Phase Particles Present in
    an As-Cast Al-Cu-Mg-Ag Alloy”, Scripta Materialia, 1999, Vol.41, pp.667-672
    64.A. K. Mukhopadhyay, “Compositional Characterization of Cu-Rich Phase
    Particles Present in As-Cast Al-Cu-Mg-(Li) Alloys Containing Ag”,
    Metallurgical and Materials Transactions A, 1999, Vol.30A, pp.1693-1704
    65.劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚, “工程材料科學”, 全華科技圖書股份有
    限公司, 1999, pp.399-432
    66.P. A. Kammer, M. D. Randall, R. E. Monore and W. F. Groth, “The Relation Of
    Filler Wire Hydrogen To Aluminum-Weld Porosity”, Welding Journal, 1963,
    pp.433-441
    67.D. L. Cheever, P. A. Kammer, R. E. Monore and D. C. Martin, “Effect Of
    Experimental 2219 And 2014 Aluminum Weld Composition Variation”, Welding
    Journal, 1969, pp.348-358

    QR CODE
    :::