跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王吟方
Ying-Fang Wang
論文名稱: Properties of Barred Spiral Galaxies
指導教授: 黃崇源
Chorng-Yuan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 51
中文關鍵詞: 棒狀螺旋星系恆星生成率
外文關鍵詞: barred spiral galaxies, star formation rate
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究了棒狀螺旋星系與螺旋星系的特性。我們從史隆數位化巡天所釋出的第十二版的資料(SDSS DR12)中選出了355159個紅移在0.001到0.1之間的星系。星系動物園 (Galaxy Zoo 2)是一個讓公眾可以上網分類星系型態的一個計畫。如果有一半的人認為這個星系是棒狀螺旋星系,我們就把這個星系當作是棒狀螺旋星系。如果有一半的人認為這個星系是螺旋星系但不具有棒狀結構,我們就把它當成螺旋星系。為了不要讓環境影響我們的研究,所以我們只選在一百萬秒差距內擁有少於100個鄰居的星系。我們的結論顯示,無論在哪個紅移及星等範圍,棒狀螺旋星系會比螺旋星系擁有更多的鄰居,所以我們推論棒狀結構的形成可能源自於周圍鄰居的重力作用影響。我們的另一個結果是跟活躍星系核有關,不論鄰居多寡,我們發現棒狀螺旋星系會比螺旋星系有更高比例的活躍星系核。而螺旋星系則會隨著鄰居數越多,有較高的活躍星系核比例。這個結果顯示棒狀結構可能可以觸發活躍星系核,而螺旋星系會因為星系的交互作用而產生活躍星系核。我們還有一個結果是關於星系的恆星生成率。我們發現棒狀螺旋比螺旋星系有更集中的恆星生成率且棒狀螺旋星系有較高的恆星生成率。


    We studied the properties of barred spiral galaxies and non-barred spiral galaxies. We selected 355159 galaxies from the Sloan Digital Sky Survey Data Release 12 (DR12) with redshifts between 0.001 and 0.1. We considered a galaxy as a barred spiral galaxy if the source has a barred spiral vote fraction greater than 0.5 in the Galaxy Zoo 2; To avoid influence caused by rich galaxy clusters, we only choose galaxies with less than 100 neighbors galaxies within 1 Mpc. Our results show that there is a positive correlation between the ratios of barred spirals to non-barred spiral galaxies and the numbers of their neighbor galaxies independent of their redshifts indicating that bar formation may be caused by tidal forces or gravitational forces. Our results also show that there are higher fractions of AGN-host galaxies in the bar-spiral galaxies than in the non-barred ones independent of their companions. These results indicate that bars might play a important role in triggering AGNs. On the other hand, the fractions of AGN-host galaxies in non-barred spiral galaxies highly depend on their companions, suggesting that the AGNs in the non-barred spirals might be triggered by galaxy interactions. Our results also show that the star formation rates (SFRs) of the whole galaxy of barred spiral galaxies and non-barred spiral galaxies are different, and the SFR of barred spiral are more concentrated than non-barred spiral galaxies.

    1. Introduction 1 2. Data Analysis 5 2.1 SDSS data 5 2.2 The WISE data 6 2.3 AGNs & Star-forming galaxies selection 6 3. Environment 8 4. AGN and Star formation22 4.1 AGN 22 4.2 Star formation25 4.2.1 SFR of the whole galaxy 25 4.2.2 Central SFR 30 4.2.3 Concentration of SFR34 5. Summary 37 Bibliography 39

    Aguerri, J. A. L. 1999, A&A, 351, 43
    Alonso, M. S., Lambas, D. G., Tissera, P., & Coldwell, G. 2007, MNRAS, 375, 1017
    Alonso, M. S., Coldwell, G., & Lambas D. G. 2013, A&A, 549, A141
    Andersen, V. 1996, AJ, 111, 1805
    Barazza, F. D., Jablonka, P., Desai, V. et al. 2009, A&A, 497, 713
    Binney, J., & Merrifield, M. "Galactic Astronomy", Princeton University Press, 1998
    Binney, J., & Tremaine, S. "Galactic Dynamics", Princeton University Press, 2008
    Byrd, G., & Valtonen, M. 1990, ApJ, 350, 89
    Cheung, E., Athanassoula, E., Masters, K. L. et al. 2013, ApJ, 779, 162
    Cheung, E., Trump, J. R., Athanassoula, E. et al. 2015, MNRAS, 447, 506
    Cluver, M. E., Jarrett, T. H., Hopkins, A. M. et al. 2014, ApJ, 782, 90
    Elmegreen, D. M., Elemgreen, B. G., & Bellin, A. 1990, ApJ, 364, 415
    Ellison, S. L., Nair, P., Patton, D. R., Scudder, J. M., Mendel, J. T., & Simard, L. 2011, MNRAS, 416, 2182
    Fanali, R., Dotti, M., Fiacconi, D., & Haardt, F. 2015, MNRAS, 454, 3641
    Galloway, M. A., Willett, K. W., Fortson, L. F. et al. 2015, MNRAS, 443, 3442
    Ho, L. C., & Filippenko, A. V. 1997, ApJ, 487, 591
    Huang, J. H., Gu, Q. S., Su, H. J., Hawarden, T. G., Liao, X. H., & Wu, G.X. 1996, A&A, 313, 13
    Hwang, H. S., Geller, M. J., Kurtz, M. J., Dell'Antonio, I. P., & Fabricant, D. G. 2012, ApJ, 758, 25
    Kauffmann, G., Heckman, T. M., Tremonti, C. et al. 2003a, MNRAS, 346, 1055
    Kennicutt, Robert C. 1998, 36, 189
    Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., & Trevena, J. 2001, ApJ, 556, 121
    Kewley, L. J., Groves, B., Kauffmann G., & Heckman, T. 2006, MNRAS, 372, 961
    Knapen, J. H., Shlosman I., & Peletier R. F. 2000, ApJ, 529, 93
    Lee, G. H., Woo, J. H., Lee, M. G., Hwang, H. S., Lee, J. C., Sohn, J., & Lee, J. H. 2012, ApJ, 750, 141
    Lee, G. H., Park, C., Lee, M. G., & Choi, Y. Y. 2012, ApJ, 745, 125
    Łokas, E. L., Ebrová, I., Pino, A. D., Sybilska, A., Athanassoula, E., & Semczuk, M. 2016, ApJ, 826, 227
    Martinet, L., & Friedli, D. 1997, A&A, 323, 363
    Masters, K. L., Nichol, R. C., Haynes, M. P. et al. 2012, MNRAS, 424, 2180
    Méndez-Abreu, J., Sánchez-Janssen R., & Aguerri, J. A. L. 2010, ApJ, 711, L61
    Méndez-Hernández, H., Magaña, A. M., Hernández-Toledo, H. M., & Valenzuela, O. 2011, RMxAC, 40, 78
    Mulchaey, J. S. & Regan, M. W. 1997, ApJ, 482, L135
    Oh, S., Oh, K., & Yi, S. K. 2012, ApJ, 198, 4
    Schawinski, K., Thomas, D., Sarzi, M., Maraston, C., Kaviraj, S., Joo, S. J., Yi, S. K., & Silk, J. 2007, MNRAS, 382, 1415
    Schwartz, M. P. 1981, ApJ, 247, 77s
    Sheth, K., Vogel, S. N., Regan, M. W., Thornley, M. D., & Teuben, P. J. 2005, ApJ, 632, 217
    Sheth, K., Elmegreen, D. M., Elmegreen, B. G., et al. 2008, ApJ, 675, 1141
    Shlosman, I., Frank, J., & Begelman, M. C. 1989, Nature, 338, 45
    Strauss, M. A., Weinberg, D. H., Lupton, R. H. et al. 2002, AJ, 124, 1810
    Thompson, L. A. 1981, ApJ, 244, L43
    van den Bergh, S. 2002, AJ, 124, 782

    QR CODE
    :::