| 研究生: |
阮光碧 Quang Bac Nguyen |
|---|---|
| 論文名稱: | Synthesis, Structural Characterization and Properties of Organically Incorporated Transition Metal Germanates and Uranium Germanates |
| 指導教授: |
李光華
Kwang-Hwa Lii |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 243 |
| 中文關鍵詞: | 過渡金屬 、鍺酸鹽 、高溫高壓水熱合成 、溶劑熱 、離子熱 、鈾金屬 |
| 外文關鍵詞: | Transition metal, uranium, germanate, solvothermal, ionothermal, high-temperature, high-pressure hydrothermal synthesis |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Microporous materials have widespread applications including ion-exchange, selective sorption or separation, and catalysis processes. New microporous compounds with novel structures and interesting properties are extremely desired for growing demands in technology.
This thesis descrives the synthesis, crystal structures and properties of organically incorporated transition metal germanates (series A), and uranium germanates (series B), which are classified on the basis of their structural characteristics and the methods of preparation. These compounds are synthesized by solvothermal, ionothermal, and high-temperature, high-pressure hydrothermal methods, and characterized by various spectroscopic techniques.
In series A, a zinc germanate, A1, was synthesized by solvothermal method. Its structure contains neutral infinite chains with empty 18-membered ring channels. This is the first example in literature where the fluorine atoms in the germanate cluster are characterized by 19F NMR spectroscopy. A niobium germanate, A2, was synthesized by using a deep-eutectic solvent as the medium for the synthesis. Its layer structure consists of NbGe6X19 clusters with 10 membered-ring windows. This is the first example of organically templated niobium germanate where the structure was characterized by single-crystal X-ray diffraction. This compound displays an intense SHG response.
In series B, the synthesis, crystal structures, and properties of three novel uranium germanates with various valence states of uranium are discussed. B1 is a mixed-valence uranium(IV,VI) germanate, Cs8UIV(UVIO2)3(Ge3O9)3•3H2O. B2 is a tetravalent uranium germanate containing four- and five-coordinate germanium, Cs4U([5]Ge2O2)([4]Ge3O9)2. B3 is a pentavalent uranium germanate containing four- and six-coordinate germanium, Cs3U[6]Ge([4]Ge3O9)2. These compounds have been structurally synthesized under high-temperature, high-pressure hydrothermal conditions and characterized by single-crystal X-ray diffraction. The valence states of uranium have been confirmed by X-ray photoelectron spectroscopy, electron paramagnetic resonance, UV-visible, and photoluminescence measurements.
(1) (a) Feng, S.; Xu, R. Acc. Chem. Res. 2001, 34, 239–247. (b) Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 103, 663–702. (c) Parnham, E. R.; Morris, R. E. Acc. Chem. Res. 2007, 40, 1005–1013. (d) Byrappaa, K.; Adschirib, T. Prog. Cryst. Growth Charact. Mater. 2007, 53, 117–166.
(2) Lin, Z.-E.; Yang, G.-Y. Eur. J. Inorg. Chem. 2010, 2895–2902.
(3) (a) Cheng, J.; Xu, R. J. Chem. Soc., Chem. Commun. 1991, 483–485. (b) Cheng, J.; Xu, R.; Yang, G. J. Chem. Soc., Dalton Trans. 1991, 1537–1540. (c) Jones, R. H.; Chen, J.; Thomas, J. M.; George, A.; Hursthouse, M. B.; Xu, R.; Li, S.; Lu, Y.; Yang, G. Chem. Mater. 1992, 4, 808–812.
(4) (a) Li, H.; Eddaoudi, M.; Richardson, D. A.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 8567–8568. (b) Plévert, J.; Gentz, T. M.; Laine, A.; Li, H.; Young, V. G.; Yaghi, O. M.; O’Keeffe, M. J. Am. Chem. Soc. 2001, 123, 12706–12707. (c) Beitone, L.; Loiseau, T.; Férey, G. Inorg. Chem. 2002, 41, 3962–3966. (d) Plévert, J.; Gentz, T. M.; Groy, T. L.; O'Keeffe, M.; Yaghi, O. M. Chem. Mater. 2003, 15, 714–718. (e) Pan, Q.; Li, J.; Christensen, K. E.; Bonneau, C.; Ren, X.; Shi, L.; Sun, J.; Zou, X.; Li, G.; Yu, J.; Xu, R. Angew. Chem., Int. Ed. 2008, 47, 7868–7871. (f) Shi, L.; Bonneau, C.; Li, Y.; Sun, J.; Yue, H.; Zou, X. Cryst. Growth Des. 2008, 8, 3695–3699. (g) Su, J.; Wang, Y.; Wang, Z.; Liao, F.; Lin, J. Inorg. Chem. 2010, 49, 9765–9769. (h) Guo, B.; Inge, A. K.; Bonneau, C.; Sun, J.; Christensen, K. E.; Yuan, Z.-Y.; Zou, X. Inorg. Chem. 2011, 50, 201–207. (i) Inge, A. K.; Sun, J.; Moraga, F; Guo, B.; Zou, X. CrystEngComm 2012, 14, 5465–5471.
(5) (a) Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 10569–10570. (b) Medina, M. E.; Iglesias, M.; Monge, M. A.; Gutiérrez-Puebla, E. Chem. Commun. 2001, 2548–2549. (c) Lin, Z.-E.; Zheng, S.-T.; Yang, G.-Y. Z. Anorg. Allg. Chem. 2006, 354–358.
(6) (a) Tripathi, A.; Young, V. G. Jr, Johnson, G. M.; Cahill, C. L.; Parise, J. B. Acta Crystallogr. 1999, C55, 496–499. (b) Li, H.; Eddaoudi, M.; Yaghi, O. M. Angew. Chem., Int. Ed. 1999, 38, 653–655. (c) Bu, X.; Feng, P.; Stucky, G. D. Chem. Mater. 2000, 12, 1505–1507. (d) Zhou, Y.; Zhu, H.; Chen, Z.; Chen, M.; Xu, Y.; Zhang, H.; Zhao, D. Angew. Chem., Int. Ed. 2001, 40, 2166–2168. (e) Pitzschke, D.; Näther, C.; Bensch, W. Z. Naturforch. 2003, 58b, 205–210. (f) Medina, M. E.; Iglesias, M.; Snejko, N.; Gutiérrez-Puebla, E.; Monge, M. A. Chem. Mater. 2004, 16, 594–599. (g) Xu, Y.; Fan, W.; Elangovan, S. P.; Ogura, M.; Okubo, T. Eur. J. Inorg. Chem. 2004, 4547–4549. (h) Attfield, M. P.; Al-Ebini, Y.; Pritchard, R. G.; Andrews, E. M.; Charlesworth, R. J.; Hung, W.; Masheder, Ben J.; Royal, D. S. Chem. Mater. 2007, 19, 316–322.
(7) (a) Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M. S.; O'Keeffe, M. Nature 2005, 437, 716–719. (b) Bonneau, C.; Sun, J.; Sanchez-Smith, R.; Guo, B.; Zhang, D.; Inge, A. K.; Edén, M.; Zou, X. Inorg. Chem. 2009, 48, 9962– 9964. (c) Inge, A. K.; Peskov, M. V.; Sun, J.; Zou, X. Cryst. Growth Des. 2012, 12, 369–375. (d) Huang, S.; Inge, A. K.; Yang, S.; Christensen, K. E.; Zou, X.; Sun, J. Dalton Trans. 2012, 41, 12358–12364.
(8) (a) Christensen, K. E.; Shi, L.; Conradsson, T.; Ren, T.-z.; Dadachov, M. S.; Zou, X. J. Am. Chem. Soc. 2006, 128, 14238–14239. (b) Ren, X.; Li, Y.; Pan, Q.; Yu, J.; Xu, R.; Xu, Y. J. Am. Chem. Soc. 2009, 131, 14128–14129. (c) Peskov, M. V.; Zou, X. J. Phys. Chem. C 2011, 115, 7729–7739.
(9) (a) Zhang, H.-X.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Inorg. Chem. 2003, 42, 6595–6597. (b) Pan, Q.; Li, J.; Ren, X.; Wang, Z.; Li, G.; Yu, J.; Xu, R. Chem. Mater. 2008, 20, 370–372. (c) Ren, X.; Li, Y.; Shao, L.; Yu, J.; Xu, R. Z. Anorg. Allg. Chem. 2012, 1345–1350.
(10) (a) Li, H.; Eddaoudi, M.; Plévert, J.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 12409–12410. (b) Liu, Z.; Weng, L.; Zhou, Y.; Chen Z.; Zhao, D. J. Mater. Chem. 2003, 13, 308–311. (c) Liu, Z.; Weng, L.; Chen, Z.; Zhao, D. Inorg. Chem. 2003, 42, 5960–5965. (d) Plévert, J.; Sanchez-Smith, R.; Gentz, T. M.; Li, H.; Groy, T. L.; Yaghi, O. M.; O'Keeffe, M. Inorg. Chem. 2003, 42, 5954–5959.
(11) (a) Francis, R. J.; Jacobson, A. J. Angew. Chem., Int. Ed. 2001, 40, 2879–2881. (b) Francis, R. J.; Jacobson, A. J. Chem. Mater. 2001, 13, 4676–4680.
(12 (a) Lin, Z.-E.; Zhang, J.; Zhao, J.-T.; Zheng, S.-T.; Pan, C.-Y.; Wang, G.-M.; Yang, G.-Y. Angew. Chem., Int. Ed. 2005, 44, 6881–6884. (b) Huang, S.; Christensen, K.; Peskov, M. V.; Yang, S.; Li, K.; Zou, X.; Sun, J. Inorg. Chem. 2011, 50, 9921– 9923. (c) Luo, W.; Mu, W.-Q.; Zhang, X.; Zhang, X.; Pu, Y.-Y.; Zhu, Q.-Y.; Dai, J. Inorg. Chem. 2012, 51, 1489–1494.
(13) (a) Bu, X.; Feng, P.; Stucky, G. D. Chem. Mater. 2000, 12, 1811–1813. (b) Wang, C.-M.; Lin, C.-H.; Yang, C.-W.; Lii, K.-H. Inorg. Chem. 2010, 49, 5783–5785.
(14) Julius, N, N.; Choudhury, A.; Rao, C. N. R. J. Solid State Chem. 2003. 170, 124–129.
(15) Lin, Z. E; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Microporous Mesoporous Mater. 2004, 74, 205–211.
(16) (a) Burns, P. C. In Structural Chemistry of Inorganic Actinide Compounds; Krivovichev, S. V., Burns, P. C., Tananaev, I. G., Eds.; Elsevier: Amsterdam, Netherlands, 2007; Chapter 1, pp 1– 30. (b) Grenthe, I.; Drożdżyński, J.; Fujino, T.; Buck, E. C.; Albrecht-Schmitt, T. E.; Wolf, S. F. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R., Edelstein, N. M., Fuger, J., Eds.; Springer: New York, 2011; Vol. 1, pp 253– 698.
(17) (a) Burns, P. C.; Ewing, R. C.; Hawthorne, F. C. Can. Mineral. 1997, 35, 1551–1570. (b) Burns P. C. Can. Mineral. 2005, 43, 1839–1894.
(18) (a) Burns, P. C. Rev. Mineral. 1999, 38, 23–90. (b) Finch, R.; Murakami, T. Rev. Mineral. 1999, 38, 91–179. (c) Ling, J.; Morrison, J. M.; Ward, M.; Poinsatte-Jones, K.; Burns, P. C. Inorg. Chem. 2010, 49, 7123–7128. (d) Morrison, J. M.; Moore-Shay, L. J.; Burns, P. C. Inorg. Chem. 2011, 50, 2272–2277.
(19) (a) Wang, X.; Huang, J.; Liu, L.; Jacobson, A. J. J. Mater. Chem. 2002, 12, 406–410. (b) Wang, X.; Huang, J.; Jacobson, A. J. J. Am. Chem. Soc. 2002, 124, 15190–15191. (c) Huang, J.; Wang, X.; Jacobson, A. J. J. Mater. Chem. 2003, 13, 191–196.
(20) (a) Chen, C.-S.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2005, 44, 935–940. (b) Lin, C.-H.; Chiang, R.-K.; Lii, K.-H. J. Am. Chem. Soc. 2009, 131, 2068–2069. (c) Liu, H.-K.; Chang, W.-J.; Lii, K.-H. Inorg. Chem. 2011, 50, 11773–11776.
(21) Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767.
(22) (a) Stieff, L. R.; Stern, T. W.; Sherwood, A. M. Science 1955, 121, 608– 609. (b) Stieff, L. R.; Stern, T. W.; Sherwood, A. M. Am. Mineral. 1956, 41, 675–688. (c) Uvarova, Y. A.; Sokolova, E.; Hawthorne, F. C.; Agakhanov, A. A.; Pautov, L. A. Can. Mineral. 2004, 42, 1005–1011.
(23) Liu, H.-K.; Lii, K.-H. Inorg. Chem. 2011, 50, 5870–5872.
(24) Durif, P. A. Acta Crystallogr. 1956, 9, 533.
(25) (a) Kraus, K. A.; Nelson, F.; Johnson, G. L. J. Am. Chem. Soc. 1949, 71, 2510–2517. (b) Kraus, K. A.; Nelson, F. J. Am. Chem. Soc. 1949, 71, 2517–2522. (c) Selbin, J.; Ortego, J. D. Chem. Rev. 1969, 69, 657–671.
(26) (a) Chen, C.-S.; Lee, S.-F.; Lii, K.-H. J. Am. Chem. Soc. 2005, 127, 12208–12209. (b) Lin, C.-H.; Chen, C.-S.; Shiryaev, A. A.; Zubavichus, Y. V.; Lii, K.-H. Inorg. Chem. 2008, 47, 4445–4447.
(27) (a) Burns, P. C.; Finch, R. J. Am. Mineral. 1999, 84, 1456–1460. (b) Hawthorne, F. C.; Finch, R. J.; Ewing, R. C. Can. Mineral. 2006, 44, 1379–1385.
(28) (a) Belai, N.; Frisch, M.; Ilton, E. S.; Ravel, B.; Cahill, C. L. Inorg. Chem. 2008, 47, 10135–10140. (b) Lin, C.-H.; Lii, K.-H. Angew. Chem., Int. Ed. 2008, 47, 8711–8713.
(29) Lee, C.-S.; Wang, S.-L.; Lii, K.-H. J. Am. Chem. Soc. 2009, 131, 15116–15117.
(30) Lee, C.-S.; Lin, C.-H.; Wang, S.-L.; Lii, K.-H. Angew. Chem., Int. Ed. 2010, 49, 4254–4256.
(31) (a) Burns, P. C.; Finch, R. J.; Hawthorne, F. C.; Miller, M. L.; Ewing, R. C. J. Nucl. Mater. 1997, 249, 199–206. (b) Bénard, P.; Louër, D.; Dacheux, N.; Brandel, V.; Genet, M. Chem. Mater. 1994, 6, 1049–1058. (c) Diwu, J.; Albrecht-Schmitt, T. E. Inorg. Chem. 2012, 51, 4432–4434.