跳到主要內容

簡易檢索 / 詳目顯示

研究生: 趙龍清
Long-Cing Jhao
論文名稱: 以有限元素法與反應曲面法分析加工路徑對傘齒輪之旋轉鍛造最佳化設計之影響
指導教授: 葉維磬
Wei-Ching Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 109
中文關鍵詞: 旋轉鍛造擺輾鍛造傘形齒輪有限元素分析
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將利用有限元素軟體Deform-3D進行模擬分析,研究上模具運動路徑為行星及螺旋軌跡之旋轉鍛造傘形齒輪,並採用六因子三水準Box-Behnken實驗設計,透過迴歸分析建立二階多項式預測模型,求得齒輪在良好填充率下,應變均勻度最小之最佳化解。結果顯示品質特性之預測模型具有精確度;初步研究最佳化結果顯示行星軌跡優於螺旋軌跡。


    In this paper, the FEM simulation model of cold rotary forging is established under Deform-3D software environment. the upper die motion path is a planetary and spiral on cold rotary forging of a spur bevel gear. Using the Box-Behnken design of experiment, through the regression analysis to build a prediction model of second-order polynomial function. Regression analysis simulation result to obtain gears at the optimization in minimum equivalent strain coefficient of variance and good filling rate.As a result, the prediction model of quality characteristics is accurate. A preliminary study showed the best result that planetary better than spiral.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 符號說明 xi 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1圓柱及圓環旋轉鍛造鍛粗加工 3 1-2-2齒輪及複雜幾何鍛件的旋轉鍛造加工 6 1-3 研究動機 8 第二章 基本理論 10 2-1旋轉鍛造成型原理 10 2-2 旋轉鍛造運動分析 13 2-3傘形齒輪模具建立 20 第三章 有限元素法與實驗設計法 23 3-1有限元素模擬 23 3-1-1有限元素法於塑性加工之應用 23 3-1-2有限元素法之力學模式及數值分析 24 3-2 Deform-3D有限元素軟體[35] 25 3-2-1軟體介紹 25 3-2-2 Deform-3D的使用流程 27 3-3模擬參數設定 29 3-3-1旋轉鍛造加工參數及材料性質 29 3-3-2有限元素網格建構與模擬收斂性探討 30 3-3-3行星軌跡有限元素分析結果例 32 3-3-4螺旋軌跡有限元素分析結果例 36 3-4實驗設計法[36] 39 3-4-1反應曲面法 39 3-4-2迴歸分析基本理論 40 3-4-3模擬實驗因子與水準 43 第四章 結果與討論 47 4-1模擬驗證 47 4-2旋轉鍛造傘形齒輪結果 52 4-2-1旋轉鍛造傘形齒輪之成型力 52 4-2-2旋轉鍛造傘形齒輪之填充率 53 4-2-3旋轉鍛造傘形齒輪之應變均勻度 55 4-3模型建構 56 4-3-1行星路徑回歸模型 61 4-3-2螺旋路徑回歸模型 69 4-3-3模型檢驗 77 4-4旋轉鍛造傘形齒輪之最佳化分析 78 4-4-1行星路徑之模擬實驗最佳化 79 4-4-2螺旋路徑之模擬實驗最佳化 81 4-5品質因子對品質特性之效應 84 4-5-1品質因子對填充率之效應 84 4-5-2品質因子對應變均勻度之效應 86 第五章 結論與建議 88 5-1結論 88 5-2建議 89 參考文獻 90

    [1]E. E. Slick, "Method of and apparatus for forgingmetal". US Patent 915 232, 16 March 1909.
    [2]R. A. C. Slater and E. Appleton, "Some experiments with model materials to simulate the rotary forging of hot steels," Proc. 11th Intl. Machine Tool Design Research Conf., Binningham, U.K., Sept, pp. 1117-1136, 1970.
    [3]D. Zhou, S. Yuan, Z. R. Wang and X. Zhenrui, "Defects caused in forming process of rotary forged parts and their preventive methods," vol. 32, no. 1, pp. 471-479, 1992.
    [4]G. Liu, S. J. Yuan, Z. R. Wang and T. Xie, "Finite element model and simulation of rotary forging of a disc," ACTA Metallurgica Sinica (English Letters), vol. 13, no. 2, pp. 470-475, 2009.
    [5]J. A. Schey, T. R. Venner and S. L. Takomana, "Shape changes in the upsetting of slender cylinders," Journal of Engineering for Industry, vol. 104, no. 1, pp. 79-83, 1982.
    [6]R. Shivpuri, "Past developments and future trends in the rotary or orbital forging process," Journal of Materials Shaping Technology, vol. 6, no. 1, pp. 55-71, 1988.
    [7]L. Hua and X. Han, "3D FE modeling simulation of cold rotary forging of a cylinder workpiece," Materials & Design, vol. 30, no. 6, pp. 2133-2142, 2009.
    [8]X. Han and L. Hua, "Effect of size of the cylindrical workpiece on the cold rotary-forging process," Materials & Design, vol. 30, no. 8, pp. 2802-2812, 2009.
    [9]X. Han and L. Hua, "Friction behaviors in cold rotary forging of 20CrMnTi alloy," Tribology International, vol. 55, pp. 29-39, 2012.
    [10]S. Choi, K. Na and J. Kim, "Upper-bound analysis of the rotary forging of a cylindrical billet," Journal of Materials Processing Technology, vol. 67, no. 1, pp. 78-82, 1997.
    [11]J. Oudin, Y. Ravalard, G. Verwaerde and J. C. Gelin, "Force torque and plastic flow analysis in rotary upsetting of ring shaped billets," International journal of mechanical sciences, vol. 27, no. 11, pp. 761-780, 1985.
    [12]X. Han and L. Hua, "Plastic deformation behaviors of cold rotary forging under different contact patterns by 3D elastic-plastic FE method," Materials Transactions, vol. 50, no. 8, pp. 1949-1958, 2009.
    [13]G. Liu, S. J. Yuan, Z. R. Wang and D. C. Zhou, "Explanation of the mushroom effect in the rotary forging of a cylinder," Journal of materials processing technology, vol. 151, no. 1, pp. 178-182, 2004.
    [14]H. K. Oh and S. Choi, "A study on center thinning in the rotary forging of a circular plate," Journal of materials processing technology, vol. 66, no. 1, pp. 101-106, 1997.
    [15]I. Montoya, M. T. Santos, I. Pérez, B. González and J. F. Puigjaner, "Kinematic and sensitivity analysis of rotary forging process by means of a simulation model," International Journal of Material Forming, vol. 1, no. 1, pp. 383-386, 2008.
    [16]P. Y. Cheng, Y. H. Chen, P. Zhou, Y. Li, "3D numerical simulation of rotary forging for bevel gear blank," Forging and Stamping Technology, vol. 33, no4, pp. 129-132, 2008.
    [17]何明祥, 斜齒輪溫間擺輾鍛造模具最佳化設計與壽命預估之研究, 國立高雄應用科技大學: 碩士論文, 2008.
    [18]蕭志祥, 傘形齒輪旋轉鍛造製程有限元素分析, 國立中央大學: 碩士論文, 2014.
    [19]J. J. Sheu and C. H. Yu, "The die failure prediction prevention of the orbital forging process," Journal of Materials Processing Technology, vol. 201, pp. 9-13, 2008.
    [20]X. Deng, L. Hua, X. Han and Y. Song, "Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear," Materials & Design, vol. 32, no. 2, pp. 1376-1389, 2011.
    [21]X. B. Deng, L. Hua and X. H. Han, "Three-dimensional FE modelling simulation of cold rotary forging of spiral bevel gear," Ironmaking & Steelmaking, vol. 38, no. 2, pp. 101-111, 2011.
    [22]W. C. Feng, W. G. Yao and P. Jiang, "Study on new spiral trajectory of orbital forming press," China Metalforming Equipment & Manufacturing Technology, vol. 49, no. 2, pp. 37-39, 2014.
    [23]G. Samolyk, "Investigation of the cold orbital forging process of an AlMgSi alloy bevel gear," Journal of Materials Processing Technology, vol. 213, no. 10, pp. 1692-1702, 2013.
    [24]Y. M. Li, H. J. Wang, X. Y. Wang and C. D. Zhu, "Study on rotary forging process of spiral bevel gear," Forging & Stamping Technology, vol. 34, no. 6, pp. 24-27, 2009.
    [25]P. Y. Cheng, R. Hu, L. Hua and J. Lan, "Finite element analysis of cool rotary forging for straight tool bevel gear," Hot Working Technology, vol. 35, no. 2, pp. 65-68, 2006.
    [26]H. P. Wang, Y. Z. Zang, L. G. Li and X. Lin, "Cold rotary forging of car half axle gear and 3-dimensional FEM simulation," Forging and Stamping Technology, vol. 32, no. 3, pp. 34-37, 2007.
    [27]M. X. Yang and Z. Y. Ren, "Research on the technology of cold precision orbital forming for semi-axle-bevel gear," Machinery, vol. 39, no. 2, pp. 56-60, 2012.
    [28]J. W. Sun, J. H. Fu, Y. T. Li, J. X. Cao and Y. Yan, "Analys of new rotary forging process of rear-semiaxis using Deform-3D," Forging and stamping technology, vol. 34, no. 3, pp. 160-163, 2009.
    [29]R. Hu, P. Y. Cheng, L. Hua, Z. G. Lu and J. Lan, "Influence of processing parameter on stress and failure form of rotary roll cavity die for straight tooth bevel gear," Hot Working Technology, vol. 36, no. 1, pp. 38-41, 2007.
    [30]P. Y. Cheng, R. Hu, Z. G. Lu and L. Hua, "Finite element analysis of maximum rolling pressure of rotary roll forming for straight tooth bevel gear," Forging and Stamping Technology, vol. 33, no. 1, pp. 50-52, 2008.
    [31]Z. Marciniak, "A rocking-die technique for cold-forming operations," Mechanical Production Engineering, vol. 117, pp. 792-797, 1970.
    [32]V. Patil Basavaraj, U. Chakkingal and T. S. Prasanna Kumar, "Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation," Journal of materials processing technology, vol. 209, no. 1, pp. 89-95, 2009.

    [33]W. C. Feng, W. G. Yao, P. Jiang and Y. Q. Shi, "New multi sheet trajectory study of orbital forming press," Journal of Plasticity Engineering, vol. 20, no. 6, pp. 126-129, 2013.
    [34]劉漢貴, 李祖榮 且 朱國瑾, “擺輾運動軌跡及調整曲線的分析研究,” 精密成形工程, 第13冊, 編號 4, pp. 90-94, 1995.
    [35]胡建軍, 李小平, Deform-3D塑性成型CAE應用教程, 北京大學出版社, 2011年1月.
    [36]葉怡成, 製程與產品最佳化, 五南出版社, 2001年6月

    QR CODE
    :::