| 研究生: |
呂昱達 Yu-Da Lyu |
|---|---|
| 論文名稱: |
橋梁基礎最佳化設計之研究 Optimum Design of Bridge Foundation |
| 指導教授: |
黃俊鴻
Jin-Hung Hwang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 320 |
| 中文關鍵詞: | 淺基礎 、樁基礎 、混合最佳化理論 、實數編碼遺傳演算法、和聲搜尋法 、差分演化法 、粒子群法 、螞蟻群法 、平行運算 |
| 外文關鍵詞: | Parallel Computing., Real-coded Genetic Algorithm, hybrid optimization |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為能提高傳統土木營建產業之競爭能力,並推廣節能減碳與永續發展的概念,本研究主要針對橋梁基礎中之樁基礎與淺基礎進行最佳化設計之研究。首先摘要回顧各種多點隨機搜尋之最佳化方法,以及其混合最佳化技術,並針對目前樁、淺基礎最佳化設計之相關文獻進行剖析探討。依此本研究建立起嚴謹且詳實之基礎設計分析模式,並整合各混合最佳化技術至實數編碼遺傳演算法、和聲搜尋法、差分演化法、粒子群法與螞蟻群法之中,並提出基於螞蟻群法之自適應參數技術,期能達到少參數化之目標。本研究另提出以最佳化與平行運算之技術來提昇最佳化參數研究工作之深度與廣度,並透過七個實際樁基礎與一個淺基礎設計案例進行最佳化效能測試。分析結果顯示,於全部所率定出之最佳化參數中,自訂參數模式下以混合和聲搜尋法(HHS/M)表現最為良好,而自適應參數模式下則以混合差分演化法(HDE/A)表現最為優良。且此兩演算法之率定參數於各種案例搭配不同年度單價之情況下,皆能有效找出全域最佳解,且與最佳解差距也較其他演算法為低。若從較原設計解節省之工程造價來看,本研究之各最佳化方法平均節省幅度可達42%,顯示已能滿足工程低價化設計與經濟性之需求。最後,本研究基於物件導向之程式語言開發出完善之視覺化介面與輸出分析報表之功能,降低使用者操作難度並能快速展示分析結果,期能對工程實務設計有所助益。
Nine hybrid optimizations are presented for pile and shallow foundations and are based on the Real-coded Genetic Algorithm (RGA), Harmony Search (HS), Differential Evolution (DE), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO). The design variable set of pile foundation is seven independent variables, including pile diameter, pile length, pile spacing of x and y direction, pile number of x and y direction, and thickness of pile cap and the set of shallow foundation includes size and depth of shallow foundation. To evaluate the efficiency of all hybrid methods, six test functions and eight design cases are used and compared with their global optimum solutions by parallel computing technology and operating optimization. The conclusions show that the performance of HHS/M and HDE/A are better than other algorithms in all case study; In addition, the result of saving costs from original case of all hybrid method is around 42%, and demonstrates the economy and efficiency obviously. Finally, this study develops a brilliant program with a friendly graphical user interface and a detailed reporter, and hopes to bring simplicity and convenience for engineers in the practical design of foundations.
1 中國土木水利工程學會,混凝土工程設計規範與解說,科技圖書股份有限公司,台北(2007)。
2 內政部營建署編輯委員會,建築物基礎構造設計規範,內政部營建署營建雜誌,台北(2001)。
3 內政部營建署編輯委員會,建築物耐震設計規範與解說,內政部營建署營建雜誌,台北(2005)。
4 日本道路協會,樁基礎設計便覽,日本道路協會,東京(1992)。
5 日本道路協會,道路橋示方書‧同解說,Ⅳ下部構造編,日本道路協會,東京(2002)。
6 日本道路協會,道路橋示方書‧同解說,Ⅴ耐震設計編,日本道路協會,東京(2002)。
7 余書維,「遺傳演算法則於群樁低價化設計之應用」,碩士論文,國立中央大學土木工程系,中壢(2003)。
8 吳明賢,「應用遺傳演算法於群樁基礎低價化設計」,碩士論文,國立中央大學土木工程系,中壢(2001)。
9 吳朗益,「應用Discrete Lagrangian Method 於群樁基礎低價化設計」,碩士論文,國立中央大學土木工程系,中壢(2001)。
10 李世炳、鄒忠毅,「簡介導引模擬退火法及其應用」,物理雙月刊,第廿四卷,第二期,第307-319頁(2002)。
11 林大為,「結合模擬退火之改良粒子群演算法於結構最佳化設計的研究」,碩士論文,國立中央大學土木工程系,中壢(2009)。
12 徐文杰,「群樁基礎之最低價設計」,碩士論文,國立中央大學土木工程系,中壢(2000)。
13 梁俊偉,「平行混成多層遺傳演算法應用於幾何非線性結構最佳化設計之研究」,碩士論文,國立中山大學機械工程研究所,高雄(2000)。
14 莊玟珊,「PSO-SA混合搜尋法與其他結構最佳化設計之應用」,碩士論文,國立中央大學土木工程系,中壢(2007)。
15 程厚捷,「混合差值進化法於苯乙烯自由離子聚合反應模式之參數估計」,碩士論文,國立中正大學化學工程研究所,嘉義(2002)。
16 黃志榮,「全套管基樁基礎初選模式之最佳化研究」,碩士論文,國立中央大學土木工程系,中壢(2006)。
17 楊克己、韓理安,樁基工程,人民交通出版社,北京(1997)。
18 劉向邦,「以和諧搜尋演算法為基礎之混合式全域搜尋演算法求解含凹形節線成本最小成本轉運問題之研究」,碩士論文,國立中央大學土木工程系,中壢(2008)。
19 劉金礪,「群樁橫向承載力的分項綜合效應係數計算法」,岩土工程學報,第十四卷,第三期,第9-19頁(1992)。
20 鍾明劍,「樁基礎最佳化設計之研究」,博士論文,國立中央大學土木工程系,中壢(2006)。
21 羅冠君,「基於和聲搜尋法與離散拉格郎日法之混合演算法於結構最佳化設計的研究」,碩士論文,國立中央大學土木工程系,中壢(2008)。
22 Alatas, B., “Chaotic harmony search algorithms,” Applied Mathematics and Computation, Vol. 216, No. 9, pp. 2687-2699 (2010).
23 Balamurugan, R., and Subramanian, S., “Hybrid integer coded differential evolution - dynamic programming approach for economic load dispatch with multiple fuel options,” Energy Conversion and Management, Vol. 49, No. 4, pp. 608-614 (2008).
24 Cai, Z., Gong, W., Ling, C.X., and Zhang, H., “A Clustering-based Differential Evolution for Global Optimization,” Applied Soft Computing, Vol. 11, No. 1, pp. 1363-1379 (2011).
25 Chan, C.M., and Wong, K.M., “Structural topology and element sizing design optimization of tall steel frameworks using a hybrid OC-GA method,” Structural and Multidisciplinary Optimization, Vol. 35, No. 5, pp. 473-488 (2008).
26 Chan, C.M., Zhang, L.M., and Ng, J.T.M., “Optimization of pile groups using hybrid genetic algorithms,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 4, pp. 497-505 (2009).
27 Chang, C.F., Wong, J.J., Chiou, J.P., and Su, C.T., “Robust searching hybrid differential evolution method for optimal reactive power planning in large-scale distribution systems,” Electric Power Systems Research, Vol. 77, No. 5-6, pp. 430-437 (2007).
28 Chang, Y.L., “Discussion on lateral pile-loading tests,” Transactions, ASCE, Vol. 102, No. , pp. 272-278 (1937).
29 Chang, Y.P., “An ant direction hybrid differential evolution algorithm in determining the tilt angle for photovoltaic modules,” Expert Systems with Applications, Vol. 37, No. 7, pp. 5415-5422 (2010).
30 Chang, Y.P., and Low, C., “An ant direction hybrid differential evolution heuristic for the large-scale passive harmonic filters planning problem,” Expert Systems with Applications, Vol. 35, No. 3, pp. 894-904 (2008).
31 Chen, J.H., Yang, L.R., and Su, M.C., “Comparison of SOM-based optimization and particle swarm optimization for minimizing the construction time of a secant pile wall,” Automation in Construction, Vol. 18, No. 6, pp. 844-848 (2009).
32 Coelho, L.S., and Bernert, D.L.A., “An improved harmony search algorithm for synchronization of discrete-time chaotic systems,” Chaos, Solitons and Fractals, Vol. 41, No. 5, pp. 2526-2532 (2009).
33 Cruz, I.L.L., Willigenburg, L.G., and Straten, G., “Optimal control of nitrate in lettuce by a hybrid approach - differential evolution and adjustable control weight gradient algorithms,” Computers and Electronics in Agriculture, Vol. 40, No. 1-3, pp. 179-197 (2003).
34 Dorigo, M., Maniezzo, V., and Colorni, A., “The ant system: optimization by a colony of cooperating agents,” IEEE Systems, Man, and Cybernetics Society, Vol. 26, No. 1, pp. 29-41 (1996).
35 Duan , H., Yu, Y., Zhang, X., and Shao, S., “Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm,” Simulation Modelling Practice and Theory, Vol. 18, No. 8, pp. 1104-1115 (2010).
36 Dueck, G., and Scheuer, T., “Threshold Accepting: a general purpose optimization algorithm appeared superior to simulated annealing,” Journal of Computational Physics, Vol. Vol. 90, No. 1, pp. 161-175 (1990).
37 Eberhart, R.C., and Kennedy, J., “A New Optimizer Using Particle Swarm Theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Vol. , No. , pp. 39-43 (1995).
38 Fesanghary, M., Mahdavi, M., Minary, M.J., and Alizadeh, Y., “Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems,” Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 33-40, pp. 3080-3091 (2008).
39 Forsati, R., Haghighat, A.T., and Mahdavi, M., “Harmony search based algorithms for bandwidth-delay-constrained least-cost multicast routing,” Computer Communications, Vol. 31, No. 10, pp. 2505-2519 (2008).
40 Geem, Z.W., Kim, J.H., and Loganathan, G.V., “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, Vol. 75, No. 5, pp. 60-68 (2001).
41 Gong, W., and Cai, Z., “An improved multiobjective differential evolution based on Pareto-adaptive dominance and orthogonal design,” European Journal of Operational Research, Vol. 198, No. 2, pp. 576-601 (2009).
42 He, D., Wang, F., and Mao, Z., “A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect,” Electrical Power and Energy Systems, Vol. 30, No. 1, pp. 31-38 (2008).
43 Jaberipour, M., and Khorram, E., “Two improved harmony search algorithms for solving engineering optimization problems,” Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 11, pp. 3316-3331 (2010).
44 Kalinli, A., Cemalacar, M., and Gündüz, Z., “New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization,” Engineering Geology, Vol. 117, No. 1-2, pp. 29-38 (2011).
45 Kaveh, A., and Talatahari, S., “Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures,” Computers and Structures, Vol. 87, No. 5-6, pp. 267-283 (2009).
46 Kennedy, J., and Eberhart, R., “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks, Vol. 4, No. , pp. 1942-1948 (1995).
47 Kim, K.N., Lee, S.H., Kim, K.S., Chung, C.K., Kim, M.M., and Lee, H.S., “Optimal pile arrangement for minimizing differential settlements in piled raft foundations,” Computers and Geotechnics, Vol. 28, No. 4, pp. 235-253 (2001).
48 Kim, S.K., Kim, J.Y., Lee, D.H., and Ryu, S.Y., “Automatic optimal design algorithm for the foundation of tower cranes,” Automation in Construction, Vol. 20, No. 1, pp. 56-65 (2011).
49 Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, pp. 671-680 (1983).
50 Leung, Y.F., Klar, A., and Soga, K., “Theoretical Study on Pile Length Optimization of Pile Groups and Piled Rafts,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 2, pp. 319-330 (2010).
51 Liao, T.W., “Two hybrid differential evolution algorithms for engineering design optimization,” Applied Soft Computing, Vol. 10, No. 4, pp. 1188-1199 (2010).
52 Lin, W.Y., “A GA-DE hybrid evolutionary algorithm for path synthesis of four-bar linkage,” Mechanism and Machine Theory, Vol. 45, No. 8, pp. 1096-1107 (2010).
53 Liu, H., Cai, Z., and Wang, Y., “Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization,” Applied Soft Computing, Vol. 10, No. 2, pp. 629-640 (2010).
54 Lu, Y., Zhou, J., Qin, H., Li, Y., and Zhang, Y., “An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects,” Expert Systems with Applications, Vol. 37, No. 7, pp. 4842-4849 (2010).
55 M. Dorigo, “Optimization, Learning and Natural Algorithms,” Ph. D Dissertation, Department of Electronics, Politecnico diMilano, Italy (1992).
56 Mahdavi, M., Fesanghary, M., and Damangir, E., “An improved harmony search algorithm for solving optimization problems,” Applied Mathematics and Computation, Vol. 188, No. 2, pp. 1567-1579 (188).
57 Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., “Equations of Calculation by Fast Computing Machines,” Journal of Chemical Physics, Vol. 6, No. 21, pp. 1087-1092 (1953).
58 Nemati, S., Basiri, M.E., Aghaee, N.G., and Aghdam, M.H., “A novel ACO–GA hybrid algorithm for feature selection in protein function prediction,” Expert Systems with Applications, Vol. 36, No. 10, pp. 12086-12094 (2009).
59 Niknam, T., and Amiri, B., “An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis,” Applied Soft Computing, Vol. 10, No. 1, pp. 183-197 (2010).
60 Omrana, M.G.H., and Mahdavi, M., “Global-best harmony search,” Applied Mathematics and Computation, Vol. 198, No. 2, pp. 643-656 (2008).
61 Onwubolu, G.C., “Design of hybrid differential evolution and group method of data handling networks for modeling and prediction,” Information Sciences, Vol. 178, No. 18, pp. 3616-3634 (2008).
62 Padmini, D., Ilamparuthi, K., and Sudheer, K.P., “Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models,” Computers and Geotechnics, Vol. 35, No. 1, pp. 33-46 (2008).
63 Pan, Q.K., Suganthan, P.N., Tasgetiren, M.F., and Liang, J.J., “A self-adaptive global best harmony search algorithm for continuous optimization problems,” Applied Mathematics and Computation, Vol. 216, No. 3, pp. 830-848 (2010).
64 Pan, Q.K., Wang, L., and Qian, B., “A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems,” Computers & Operations Research, Vol. 36, No. 8, pp. 2498-2511 (2009).
65 Pooyanejad. F., Jaksa, M.B., Kakhi, M., and McCabe, B.A., “Prediction of pile settlement using artificial neural networks based on standard penetration test data,” Computers and Geotechnics, Vol. 36, No. 7, pp. 1125-1133 (2009).
66 Saitoh, M., “Fixed-head pile bending by kinematic interaction and criteria for its minimization at optimal pile radius,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 10, pp. 1243-1251 (2005).
67 Samui, P., “Support vector machine applied to settlement of shallow foundations on cohesionless soils,” Computers and Geotechnics, Vol. 35, No. 3, pp. 419-427 (2008).
68 Sitarz, S., “Ant algorithms and simulated annealing for multicriteria dynamic programming,” Computers & Operations Research, Vol. 36, No. 2, pp. 433-441 (2009).
69 Stephany, S., Becceneri, J.C., Souto, R.P., Camposvelho, H.F., and Silvaneto, A.J., “A pre-regularization scheme for the reconstruction of a spatial dependent scattering albedo using a hybrid ant colony optimization implementation,” Applied Mathematical Modelling, Vol. 34, No. 3, pp. 561-572 (2010).
70 Storn, R., and Price, K., “Differential Evolution - A simple and efficient Heuristic for global optimization over continuous spaces,” Journal of Global Optimization, Vol. 11, No. 4, pp. 341-359 (1997).
71 Truman, K.Z., and Hoback, A.S., “Optimization of steel piles under rigid slab foundations using optimality criteria,” Structural and Multidisciplinary Optimization, Vol. 5, No. 1-2, pp. 30-36 (1992).
72 Valliappan, S., Tandjiria, V., and Khalili, N., “Design of raft-pile foundation using combined optimization and finite element approach,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, No. , pp. 1043-1065 (1999).
73 Wang, L., Pan, Q.K., and Tasgetiren, M.F., “Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms,” Expert Systems with Applications, Vol. 37, No. 12, pp. 7929-7936 (2010).
74 Xu, R., Venayagamoorthy, G.K., and Wunsch II, D.C., “Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization,” Neural Networks, Vol. 20, No. 8, pp. 917-927 (2007).
75 Yuan, X., Cao, B., Yang, B., and Yuan, Y., “Hydrothermal scheduling using chaotic hybrid differential evolution,” Energy Conversion and Management, Vol. 49, No. 12, pp. 3627-3633 (2008).
76 Zhang, C., Ning, J., Lu, S., Ouyang, D., and Ding, T., “A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization,” Operations Research Letters, Vol. 37, No. 2, pp. 117-122 (2009).