| 研究生: |
陳湘婷 Hsiang-ting Chen |
|---|---|
| 論文名稱: |
磁性二氧化鈦光溶解現象對光催化反應之影響 Magnetic properties of titanium dioxide dissolved light on the influence of the photocatalytic reaction |
| 指導教授: |
秦靜如
Ching-Ju Monica Chin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 光觸媒 、磁性二氧化鈦 、光溶解 |
| 外文關鍵詞: | photodissolution, magnetite, titanium dioxide |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用磁性四氧化三鐵來做為磁核,製備出具磁性二氧化鈦。為了解加入磁核後磁性二氧化鈦顆粒的光催化活性及磁核對光觸媒反應之影響,因此將以不同製備條件(如: 鍛燒溫度、酸洗時間、鐵鈦比),去探討磁性二氧化鈦是否因為磁核的存在或是製備條件的不同,而影響其光催化分解反應。以可見光照射結果顯示光溶解程度皆小於儀器偵測極限,而經由紫外光照實驗結果顯示,磁性二氧化鈦發生光溶解現象,光溶解現象會依照不同酸洗時間、鍛燒溫度以及鐵鈦比的不同而改變。以不同製備條件顆粒測試光催降解程度,結果顯示光溶解現象會影響二氧化鈦光催化反應。另利用純二氧化鈦添加鐵離子於甲醇溶液中,了解光溶出之鐵離子對光催化之影響,結果顯示,鐵離子濃度越高,光催化反應衰減越劇。而二氧化鈦須經由鍛燒使二氧化鈦結晶,當以鍛燒溫度為400℃、450℃、500℃下測試光催化反應,結果顯示光催化反應依鍛燒溫度上升而下降。將本實驗室製備出磁性二氧化鈦以可見光光照,結果顯示在可見光下磁性二氧化鈦有較低的催化效果。
Magnetic titanium dioxide particles were synthesized. The effects of preparation parameters, such as Fe/Ti weight ratio, period of acid wash, and calcinations temperature on photodissolution of magnetite nanoparticles were studied. The influences of photodissolution of the magnetite nanoparticles on the photon-assisted catalysis were also investigated. Photocatalysis of methanol to formaldehyde was conducted. Photocatalysis by pure TiO2 with addition of Fe3+ ions in the methanol solution was performed to examine the effects of photo-dissolved iron on the photocatalytic ability magnetic titanium dioxide. The results showed that severe acid wash would destroy the matrix of TiO2 and increase the surface area of magnetic TiO2 particles. Thus, when the acid wash time was too long, more Fe3O4 were washed out. Also, as the calcinations temperature increased, the photodissolution of magnetite decreased, which maybe because the crystalline of TiO2 shifted from anatase to rutile, in which the binding between rutile and magnetite were stronger. As the iron concentration in the solution increased, the photocatalysis of methanol decreased. Our preliminary tests also showed that the magnetic TiO2 synthesized in this work has weak photocatalytic ability by visible light.
1. Sakai, N., Komoda, Y., Rao, T.N., Tryk, D.A. and Fujishima, A., “Effect of adsorbed water on the photoelectrorheology of TiO2 particle suspensions,” Journal.Electroanal. Chemical., 445, pp.1-6(1998)
2. Fujishima, A., Rao, T.N. and Tryk, D.A., “Titanium dioxide photocatalysis,” Journal Photoch. Photobio, 1, pp.1-21(2000)
3. Watts, R.J., Kong, S., Lee, W., “Sedimentation and reuse of titanium dioxide: application to suspended-photocatalyst reactors,” Journal of Environmental Engineering , 121, pp.730-735(1995)
4. Bandala, E.R., Gelover, S., Leal, M.T. and Arancibia-Bulnes, C.A., Jimenez, and Estrada, C.A., “Solar photocatalytic degration of aldrin,” Catalysis Today, 76, pp.189-199(2002)
5. Driessen, M.D., Goodman, A.L., Miller, T.M., Zaharias, G.A. and Grassian, V.H., “Gas-phase photo oxidation of trichloroethylene on TiO2 and ZnO: Influence of trichloroethylene pressure, oxygen pressure, and the photocatalyst surface on the product distribution,” Journal Physical Chemical. B., 102, pp.549-556(1998).
6. Fox, M.A. and Dualy, M.T., “Heterogeneous photocatalysis,” Chemical Reviews, 93, pp.341-357(1993)
7. Diebold, U. “The surface science of titanium dioxide,” Surface Science Reports, 48, pp.53-229(2003)
.
8. Shen Weiren, Zhao Wenkuan, He Fei, and Fang Youling, “TiO2-based photocatalysis and its applications for wastewater treatment,” Progress in Chemistry, No.4 1998.
9. Yamashita, H., Nishiguchi, H., Kamada, N., Anpo, M.Y., Teraoka, Hatano, H., Ehara, S., Kikui, K., and Palmisano, L., “Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts,” Research on Chemical Intermediates, 20, pp.815-823(1994)
10. Yoldas, B.E., “Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters ,” Journal. Mater. Sci, 21, pp.1087(1986)
11. Yu, J., Zhao, X., and Zhao, Q., “photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method,” Mater. Chemical. 69, pp.25-29(2001)
12. Sakai, H., Kawahara, H., Shimazaki, M., and Abe, M., “Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition,” Langmuir, 14, pp.2208-2212(1998)
13. 葉世墉,「二氧化鈦的合成與光催化性質的研究」,碩士論文,中央大學化學工程與材料工程研究所,(2005)。
14. 陳姵紋,「利用Fe3O4磁性顆粒處理化學機械研磨廢水」,碩士論文,中央大學環境工程研究所,(2004)。
15. Khalafalla, “Magnetofluids and their manufacture,” United. States. Patent, No.3764540 ,(1973)
16. Zhou, Welie, Kumbhar, A., Wiemann, J., Jiye Fang, Carpenter, E.E., and O’Connor, C.J., “Gold-coated iron(Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly,” Journal of Solid State Chemistry, 159, pp.26(2001)
17. Dong, A.G., Wang, Y.J., Tang, Y.N., Ren, W., Yang, L. and Gao, Z. “Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction,” Chemical Comm, 350(2002)
18. Mallik, K., Mandal, M., Pradhan, N. and Pal, T., “Seed mediated formation of bimetallic nanoparticles by uv irradiation :A photochemical approach for the preparation of core-shell type structures” NANO LETTERS, 6, pp.319-322(2001)
19. Zepp, R.G., “Factors affecting the photochemical treatment of hazardous waste,” Environ. Sci. and Technol., Vol.22, No.3, pp.256(1988)
20. Kumar, K.N.P., Kumar, J., and Keizer K., “Effect of peptization on densification and phase transformation behavior of sol-gel-derived nanostructured titania,” Journal. Ceram. Social., 77(5), pp.1396-1400(1994)
21. Linsebigler, A.L., Lu, G. and Jr, Y., “Photocatalysis on TiO2 surfaces: principles, mechanlsms and selected results” Chem. Rev 95, pp. 735-758, 1995.
22. Lifongo, L.L., Bowden, D.J. and Brimblecombe, P.“Photodegradation of haloacetic acids in water,”Chemosphere, 55, pp.467-476(2004)
23. Matsunaga, T., Tomoda, R., Nakajima, T., Nakamiura, N., Tamotsu, K., “Continuous-sterilization system that uses photosemiconductor powers,” Applied and Environmental Microbiology , 54(6), pp.1330-1333(1988)
24. Chang, W., Lin, W.Y., Zainal, Z., Nathan E., Williams, K.Z., Andrew P. K., Smith, R.L., Rajeshmar, K., “Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system,” Environmental Science and Technology, 28, pp.934-938(1994)
25. Sjogren, C.J., Raymond, A. Sireka., “Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis,” Applied and Environmental Microbiology, 60(1), pp.344-347(1994)
26. Sunada, K., Toshiya, W. and Hashimoto, K.,“Bactericidal activity of copper-deposited TiO2 thin film under weak uv light illumination,”Environ Sci Technol , 37, pp.4785-4789(2003)
27. Wang, M.S., Chu, W.C., Sun, D.S., Huang, H.S., Chen, J.H., Tsai, P.J., Lin, N.T., Yu, M.S., Hsu, S.F., Wang, S.L. and Chang, H.H., “Visible-Light-Induced Bactericidal Activity of a Nitrogen-Doped Titanium Photocatalyst against Human Pathogens,”Applied and Environmental Microbiology, 72, pp.6111-6116(2006)
28. Yao, K.F. Peng, Z., Liao, Z.H. and Chen, J.J.“Preparation and photocatalytic property of TiO2-Fe3O4 core-shell nanoparticles, ”Journal of Nanoscience and Nanotechnology, 9, pp.1458-1461(2009)
29. Chen, J.Y. and Peng, T.Z.,“preparation and properties of a magnetic-nanometer TiO2/Fe3O4 composite photocatalyst,”Journal Aata Chimica Sinica, 62, pp.2093-2097(2004)
30. Chen, Y.H., Liu, Y.Y., Lin, R.H. and Yen, F.S.“Photocatalytic degration of p-penylendiamine with TiO2-coated magnetic PMMA microspheres in an aqueous ssolution,”Journal of Hazardous Materials, 163, pp.973-981(2009)
31. Xu, J. , Ao, Y., Fu, D.G., and Yuan, C.W.“Low-temperature preparation of anatase titanic-coated magnetite,”Journal of Physics and Chemistry of Solids, 69, pp.1980-1984(2008)
32. McMurry, T.A., Byren, J.A., Dunlop, P.S.M., Winkelman, J.G.M., Eggins, B.R. and McAdms, E.T. “Instrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilized TiO2 films,” Applied Catalysis A:General, 262, pp.105-110(2004)
33. Dhananjeyan, M.R., Annapoorani, R. and Renganathan, R., “A comparative study on the TiO2 mediated photoxidation of uracil, thymine and 6-methyluracil,” Journal of photochemistry and photobiology A: Chemistry, 109, pp.147-153(1997)
34. Sauer, T., Cesconeto, N.G., Jose, H.J., Moreira, R.F.P.M., “Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor,” Journal of photochemistry and photobiology A: Chemistry, 149, pp.147-154(2002)
35. Epling, G.A. and Lin, C. “Photoassisted bleaching of dyes utilizing TiO2 and visible light,” Chemosphere, 46, pp.561-570 (2002).
36. Beydoun, D. and Amal, R. “Novel photocatalyst: titania-coated magnetite. activity and photodissolution,” Journal of Physical Chemistry B, 104, pp. 4387-4396 (2000).
37. Beydou, D., Amal, R., Low, G., and Stephen, M., “Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide,” Journal of Molecular Catalysis A: Chemical , 180, pp.193-200 (2002).
38. Beydoun, D. and Amal, R. “Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst,” Materials Science and Engineering B, 94, pp. 71-81 (2002)
39. Wang, Y. “Solar photocatalytic degradation of eight commercial dyes in TiO2 suspension,” Water Research, 34, pp.990-994 (2000).
40. Herrmann, J.M. “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catalyst Today, 53, pp.115-129 (1999).
41. Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., “Environmental applications of semiconductor photocatalysis,” Chemical Review, 95, pp.69-96(1995)
42. Choi, W., Termin, A., and Hoffmann, M.R. “The role of metal iron dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics” Journal Physcial. Chemical, 98, pp.13669-13679(1994)
43. Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E. and Hidaka H., “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors,” Journal. Photochem. Photobio. A : Chemical, 85, pp.247-255(1995).
44. Huang, H.C., Huang, G.L., Chen, H.L. and Lee, Y.D. “Immobilization of TiO2 nanoparticles on Fe-felled carbon nanocapsules for photocatalytic applications,” Thin Solid Film , 515, pp.1033-1037(2006).
45. Zhu, J., Chen, F., Zhang, J., Chen, H., and Anpo, M., “Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization,” Journal of photochemistry and photobiology A: Chemistry, 180, pp. 196-204 (2006).
46. Jung, K.Y., and Park, S.B., “Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene,” Journal of photochemistry and photobiology A: Chemistry, 127, pp. 117-122 (1999).
47. Adan, C., Bahamonde, A., Fernandez-Garcia, M., and Martinez-Arias, A. , “Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation,” Applied Catalysis B: Environmental, 72, pp. 11-17 (2007).
48. Mora, E.S., Barojas, E.G., Rojas, E.R. and Gonzalez, R.S., “Morphological, optical and photocatalytic properties of TiO2-Fe2O3 multilayers,” Solar Energy Materials and Solar Cell , 91, pp.1412-1415 (2007).
49. Navio, J.A., Colon, G., Real, C. and Litter, M.I. “Iron-doped titania semiconductor powers prepared by a sol-gel method. Part I: synthesis and characterization ,” Applied Catalysis A : General , 177, pp. 111-120 (1999).
50. Navio, J.A., Testa, J.J. , Djedjeian, P., Padron, J.R., Rodriguez, D. and Litter, M.I. “Iron-doped titania semiconductor powers prepared by a sol-gel method. Part II: photocatalytic properties,” Applied Catalysis A : General , 178, pp. 191-203 (1999).
51. Tawkaew, S. and Supothina, S. “Preparation of agglomerated particles of TiO2 and silica-coated magnetic particle,” Materials Chemistry and Physics, 108, pp. 147-153 (2008).
52. 沈佳俞,「磁性二氧化鈦複合顆粒的製備和特性分析」,碩士論文,中央大學環境工程研究所,(2008)。