| 研究生: |
鍾育軒 Yu-hsuan Chung |
|---|---|
| 論文名稱: |
微波帶通低雜訊放大器設計 Microwave Bandpass Low Noise Amplifier Design |
| 指導教授: |
林祐生
Yo-shen Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 低雜訊放大器 、帶通匹配電路 |
| 外文關鍵詞: | low noise amplifier, bandpass matching network |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究目標為研製一微波帶通低雜訊放大器,整合帶通濾波器與低雜訊放大器的功能於一個元件,而能改良傳統收發機接收端架構,藉此縮小收發機面積,提高系統整合度。
本論文以可匹配至複數阻抗之帶通濾波器來設計低雜訊放大器的匹配電路,使其具有帶通的響應,提出的設計公式先以微波基板設計射頻帶通低雜訊放大器驗證可行性,藉由可產生傳輸零點的匹配電路,提高帶通低雜訊放大器選擇度並達到更寬頻的止帶,並探討集總式與分佈式的佈局差異,尋求最佳的電路實現方式,以兩級串接分佈式設計的電路量測結果為例,在通帶2.3~2.5 GHz之間,雜訊指數為1.6±0.14 dB,小訊號增益為25.2±0.7 dB,選擇度方面,在頻率1.81 GHz以下和3.12 GHz~20 GHz之間,皆有逾40 dB的衰減量,與相關文獻比較,確實達到兼具低雜訊、平坦的增益以及高頻率選擇度的特性;再利用砷化鎵積體電路實現單晶片K頻段帶通低雜訊放大器,期能藉此提昇元件之間的整合度,大幅減小FMCW汽車雷達系統模組體積。
本論文提出的帶通低雜訊放大器,具有簡單明瞭的設計流程,在射頻帶通低雜訊放大器的實做上達到設計目標,而使用砷化鎵積體電路製程所設計的電路,量測結果雖不符合預期,但亦詳盡討論模擬與量測不符的原因,同時也為未來進一步的改良提供更多的設計經驗。
Microwave bandpass low noise amplifier design that combines the functions of bandpass filter (BPF) and low noise amplifier (LNA) is proposed in this thesis. It’s believed to have great potential in revising the general receiver structure and largely reducing the circuit area of transceiver by higher level of system integration.
In this work, the design of BPF with complex load is applied to the matching network design of an LNA so as to achieve LNA with BPF-like response. In order to verify the effectiveness of proposed design equations and procedure, several bandpass LNAs with bandwidth from 2.3~2.5 GHz are fabricated on microwave laminate. The selectivity and stopband rejection of bandpass LNAs are achieved by bandpass matching network with transmission zeros. Optimum circuit layout is investigated through the comparison of lumped and distributed designs. Specifically, the two-stage cascade distributed bandpass LNA with passband from 2.3 to 2.5 GHz has a noise figure of 1.6±0.14 dB and small signal gain of 25.2±0.7 dB. In addition, the stopband rejection below 1.81 GHz and from 3.12 to 20 GHz are all better than 40 dB. Compared to related previous works, the proposed bandpass LNAs indeed demonstrate features of low noise figure, flat gain and high selectivity. Single chip design of K-Band bandpass LNA is also implemented with GaAs PHEMT process. It can be used for reducing module size of FMCW automobile radar system module by higher level of system integration.
The proposed bandpass LNA features simple and explicit design flows. From the measurement results of bandpass LNAs with bandwidth from 2.3~2.5 GHz, design goals are successfully achieved. Although measurement results of K-Band bandpass LNAs using GaAs PHEMT process aren’t in good agreement with simulation results, the possible cause has been found out, which can be applied to the design revision of bandpass LNAs in the future.
[1] Y. H. Cho, D. Y. Jung, Y. C. Lee, J. W. Lee, M. S. Song, E.-S. Nam, S. Kang and C. S. Park, “A fully embedded LTCC multilayer BPF for 3-D integration of 40-GHz radio,” IEEE Trans. Adv. Packag., vol. 30, pp. 521–525, Aug. 2007.
[2] B. G. Choi, M. G. Stubbs and C. S. Park, “A Ka-band narrow bandpass filter using LTCC technology,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 9, pp. 388–389, Sep. 2003.
[3] K.-W. Fan, C.-C. Weng, Z.-M. Tsai, H. Wang and S.-K. Jeng, “K-band MMIC active band-pass filters,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 1, pp. 19–21, Jan. 2005.
[4] K.-K. Huang, M.-J. Chiang and C.-K. C. Tzuang, “A 3.3 mW K-band 0.18-?m 1P6M CMOS active bandpass filter using complementary current-reuse pair,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 94–96, Feb. 2008.
[5] H. Ezzedine, L. Billonnet, B. Jarry and P. Guillon, “Optimization of noise performance for various topologies of planar microwave active filters using noise wave techniques,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2484–2492, Dec. 1998.
[6] L. Nenert, D. Denis, L. Billonnet, B. Jarry, P. Guillon, “Analysis and optimization of noise and gain performances for various topologies of microwave ring resonator planar active filters,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1999, pp. 1223–1226.
[7] K.-K. M. Cheng, H.-Y. Chan, “Noise performance of negative-resistance compensated microwave bandpass filters—theory and experiments,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 924–927, May 2001.
[8] Y.-H. Chun, J.-R. Lee, S.-W. Yun and J.-K. Rhee, “Design of an RF low-noise bandpass filter using active capacitance circuit,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 687–695, Feb. 2005.
[9] Y.-H. Chun, S.-W. Yun and J.-K. Rhee, “Active impedance inverter: analysis and its application to the bandpass filter design,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, pp. 1911–1914.
[10] D. K. Shaeffer, T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997.
[11] H. Uchida, S. Takatsu, K. Nakahara, T. Katoh, Y. Itoh, R. Imai, M. Yamamoto and N. Kadowaki, “Ka-band multistage MMIC low-noise amplifier using source inductors with different values for each Stage,” IEEE Microwave Guided Wave Lett., vol. 9, no. 2, pp. 71–72, Feb. 1999.
[12] K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang and M. F. Chang, “K-band low-noise amplifiers using 0.18 ?m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106–108, Mar. 2004.
[13] S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 ?m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448–450, July 2005.
[14] F. Sabouri-S, C. Christian and T. Larsen, “A single-chip GaAs MMIC image-rejection front-end for digital European cordless telecommunications,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 8, pp. 1318–1325, Aug. 2000.
[15] T.-K. Nguyen, N.-J. Oh, C.-Y. Cha, Y.-H. Oh, G.-J. Ihm and S.-G. Lee, “Image-rejection CMOS low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 538–547, Feb. 2005.
[16] C.-Y. Wu and S.-Y. Hsiao, “The design of a 3-V 900-MHz CMOS bandpass amplifier,” IEEE J. Solid-State Circuits, vol. 32, no.2, pp. 159–167, Feb. 1997.
[17] T. W. Kim, H. Muthali, S. Sengupta, K. Barnett and J. Jaffee, “Multi-standard mobile broadcast receiver LNA with integrated selectivity and novel wideband impedance matching technique,” IEEE J. Solid-State Circuits, vol. 44, no.3, pp. 675–685, Mar. 2009.
[18] J.-L. Chen, S.-F. Chang, C.-C. Liu and H.-W. Kuo, “Design of a 20-to-40 GHz bandpass MMIC amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2003, pp. 1275–1278.
[19] G. Gonzalez, Microwave Transistor Amplifier Analysis and Design, Second Edition, Prentice Hall, New Jersey, 1997.
[20] G. L. Matthaei, L. Yong and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, McGraw-Hill, Inc., 1980.
[21] L. K. Yeung, K.-L. Wu, Y. E. Wang, “Low-temperature cofired ceramic LC filters for RF applications,” IEEE Microw. Mag., vol 9, no. 5, pp.118–128, Oct. 2008.
[22] 謝育書, “K-Band及Q-Band毫米波帶通濾波器設計” 碩士論文, 國立中央大學, 2008.
[23] Y.-S. Lin, C.-C. Chen and S.-S. Lu, “A miniaturized monolithic low noise amplifier for 2.4/5.2/5.7 GHz WLAN application using InGaP/GaAs HBT technology,” in Proc. IEEE AP-ASIC, Aug. 2004, pp. 292–295.
[24] J. S. Hong, M. J. Landcaster, Microstrip Filters for RF/Microwave Application, John Wiley & Sons, Inc., 2001.
[25] D. M. Pozar, Microwave Engineering, 3rd Edition, John Wiley & Sons, Inc., 2005.